
Final Project Report
Bounded Knapsack Problem

Jingyuan Wang(jw3732), Shaohua Tang(st3207)

Fall 2019

1 Base Code With No Parallel

We start the project by coding up the base code of solving bounded knapsack
problem with dynamic programming approach in Haskell. Here, we take the
index of the returned array from solve to be the weight. Each element of that
array is composed of a tuple with the first element as the maximum total value,
and the second to be an array consists of tuples of item names and the quantity.

1.1 Data set and run the code

The command line for starting up the base code is:
./dp randomItems.txt 300
where randomItems.txt is an automatically generated text file of 10000 items

with their information line by line in the format (itemName, weight, value, quan-
titylimit). ItemName is randomly picked from words.txt contained in homework
3; Weight and value are random integers between 2 and 50; Quantity limit is an
random integer between 1 and 5; And 300 is the weight limit for the backpack.

1.2 Base code runtime

Below shows the runtime output for the base code from running (code can
be found in section 5)

./dp randItems.txt 300 +RTS -s

1 (6501 ,[(" betso",5) ,(" contection ",4) ,(" orthoclastic ",2) ,(" macromeric

",1) ,("uprightly ",5) ,(" conjugium ",1) ,("ardor",3) ,("Sestian ",1)

,(" noncondensation ",2) ,(" intellectible ",2) ,(" supposititious ",3)

,(" centripetalism ",3) ,(" oversolemn ",1) ,(" unestimated ",4) ,("

stancher ",3) ,(" tyrannicide ",2) ,(" archpretender ",5) ,("klam",3)

,(" meteoritic ",1) ,(" circulable ",4) ,(" productory ",2) ,("

noncoincident ",2) ,("speckless ",2) ,("Patarin ",4) ,(" foresaddle

",1) ,("riffraff ",4) ,(" frankness ",2) ,(" rationalistical ",3) ,("

1

forebowline ",1) ,(" anidiomatical ",4) ,(" counterturn ",1) ,("

pepticity ",4) ,(" proteroglyphic ",3) ,("sponspeck ",4) ,("

subdititious ",3) ,(" Janiculum ",2) ,("fergusite ",5) ,("

spermatogenic ",2) ,("qualmy ",2) ,(" forgottenness ",4) ,(" iodocresol

",2) ,("esocyclic ",2) ,(" Castoridae ",1) ,(" wholeheartedly ",3) ,("

homeoblastic ",4) ,(" quotationally ",5) ,(" intervalvular ",3) ,("

plumbosolvency ",4) ,(" podophthalmitic ",2) ,("kern",3) ,("atropic

",3) ,(" hyposystole ",2) ,("shama",2) ,(" paucifolious ",3)])

2 483 ,501 ,064 bytes allocated in the heap

3 808 ,853 ,736 bytes copied during GC

4 153 ,080 ,616 bytes maximum residency (8 sample(s))

5 421 ,080 bytes maximum slop

6 145 MB total memory in use (0 MB lost due to

fragmentation)

7
8 Tot time (elapsed) Avg pause

Max pause

9 Gen 0 461 colls , 0 par 0.443s 0.490s 0.0011s

0.0077s

10 Gen 1 8 colls , 0 par 0.351s 0.638s 0.0798s

0.2429s

11
12 INIT time 0.000s (0.003s elapsed)

13 MUT time 0.367s (0.387s elapsed)

14 GC time 0.794s (1.129s elapsed)

15 EXIT time 0.000s (0.004s elapsed)

16 Total time 1.162s (1.522s elapsed)

17
18 %GC time 0.0% (0.0% elapsed)

19
20 Alloc rate 1 ,316 ,627 ,219 bytes per MUT second

21
22 Productivity 31.6% of total user , 25.4% of total elapsed

From the above output, we can see that the runtime is pretty good for
the unparallelized version of knapsack code. In below sections we tried to add
parallelism into the code to improve the performance.

2 Analysis

The time complexity of the base code is O(nw), where n is number of items
and w is the weight. And corresponding to the code, there are two main loops:

1 solve = foldr myroll basearray

2 solu = map getbest [0..]

where ”solve” fold through all items and ”solu” maps the weights. Unfortu-
nately foldr can only be parallelized if the function being folded is associative.
In other words, the function must has type

1 a -> a -> a

2

to achieve parallelization. Since our function ”myroll” with type

1 myroll

2 :: (Ix i, Num i) =>

3 Item

4 -> Array Int (Int , [(String , Int)])

5 -> Array i (Int , [(String , Int)])

is not associative, the foldr part cannot be parallelized. Therefore the only
parallelism we can perform is the ”map”.

3 Developing Parallelized Algorithm

3.1 parMap

The first thought we have is to use runPar with parMap instead of the pure
map function. Therefore, we tried with using parMap with runPar, which we
replaced the line

1 solu = map getbest [1..]

with

1 solu = map fromJust (filter isJust (runPar \$ parMap getbest [0

.. ttlwght]))

And edited a couple places to using Monad. Then we run with two cores
and the result shown in threadscope is:

Obviously the result is not satisfying. Therefore we tried another attempt.

3.2 Strategy: parList

3

This time we tried to used strategy with parList to parallelize the code. We
replace

1 solu = map getbest [1..]

with

1 solu = withStrategy (parList rdeepseq) (map getbest [0.. ttlwght])

And below is the result of running the code with 2 cores.

We can see that the runtime result is much better than the first version with
parMap.

3.3 Strategy: parBuffer

We tried to further improve the parallel performance. And by looking at
”spark states”, we notices that in previous result, most of the sparks are over-
flowed, as shown below

parList sparks states

Therefore, we tried to use parBuffer, which is supposed to help regulating
the number of sparks. So we replace

1 solu = withStrategy (parList rdeepseq) (map getbest [0.. ttlwght])

with

1 solu = withStrategy (parBuffer 100 rdeepseq) (map getbest [0..

ttlwght])

4

