Final Project Report
Bounded Knapsack Problem

Jingyuan Wang(jw3732), Shaohua Tang(st3207)
Fall 2019

1 Base Code With No Parallel

We start the project by coding up the base code of solving bounded knapsack
problem with dynamic programming approach in Haskell. Here, we take the
index of the returned array from solve to be the weight. Each element of that
array is composed of a tuple with the first element as the maximum total value,
and the second to be an array consists of tuples of item names and the quantity.

1.1 Data set and run the code

The command line for starting up the base code is:

./dp randomItems.txt 300

where randomltems.txt is an automatically generated text file of 10000 items
with their information line by line in the format (itemName, weight, value, quan-
titylimit). ItemName is randomly picked from words.txt contained in homework
3; Weight and value are random integers between 2 and 50; Quantity limit is an
random integer between 1 and 5; And 300 is the weight limit for the backpack.

1.2 Base code runtime

Below shows the runtime output for the base code from running (code can
be found in section 5)
./dp randItems.txt 300 +RTS -s

1 (6501,[("betso",5),("contection",4),("orthoclastic",2),("macromeric

",1) ,("uprightly",5),("conjugium",1) ,("ardor",3) ,("Sestian",1)
,("noncondensation",2) ,("intellectible",2),("supposititious",3)
,("centripetalism",3) ,("oversolemn",1),("unestimated",4) , ("
stancher",3) ,("tyrannicide",2) ,("archpretender",5),("klam",3)
,("meteoritic",1) ,("circulable",4),("productory",2),("
noncoincident",2) ,("speckless",2),("Patarin",4) ,("foresaddle

" 1) ,("riffraff",4) ,("frankness",2) ,("rationalistical",3), ("

O UL W N

N

10

11
12
13
14
15
16
17
18
19
20
21
22

—

1

forebowline",1) ,("anidiomatical",4) ,("counterturn",1), ("
pepticity",4) ,("proteroglyphic",3),("sponspeck",4) ,("
subdititious",3) ,("Janiculum",2) ,("fergusite",5),("
spermatogenic",2) ,("qualmy",2) ,("forgottenness" ,4),("iodocresol
",2) ,("esocyclic",2) ,("Castoridae",1) ,("wholeheartedly",3) ,("
homeoblastic",4) ,("quotationally",5),("intervalvular",3) ,("
plumbosolvency" ,4) ,("podophthalmitic",2),("kern",3),("atropic
",3) ,("hyposystole",2),("shama",2) ,("paucifolious",3)])
483,501,064 bytes allocated in the heap

808,853,736 bytes copied during GC

163,080,616 bytes maximum residency (8 sample(s))

421,080 bytes maximum slop
145 MB total memory in use (0O MB lost due to

fragmentation)

Tot time (elapsed) Avg pause
Max pause

Gen O 461 colls, 0 par 0.443s 0.490s 0.0011s
0.0077s

Gen 1 8 colls, 0 par 0.351s 0.638s 0.0798s
0.2429s

INIT time 0.000s (0.003s elapsed)

MUT time 0.367s (0.387s elapsed)

GC time 0.794s (1.129s elapsed)

EXIT time 0.000s (0.004s elapsed)

Total time 1.162s (1.522s elapsed)

%GC time 0.0% (0.0% elapsed)

Alloc rate 1,316,627 ,219 bytes per MUT second

Productivity 31.6% of total user, 25.4J of total elapsed

From the above output, we can see that the runtime is pretty good for
the unparallelized version of knapsack code. In below sections we tried to add
parallelism into the code to improve the performance.

2 Analysis

The time complexity of the base code is O(nw), where n is number of items
and w is the weight. And corresponding to the code, there are two main loops:

solve = foldr myroll basearray
solu = map getbest [0..]

where "solve” fold through all items and ”solu” maps the weights. Unfortu-
nately foldr can only be parallelized if the function being folded is associative.
In other words, the function must has type

a -> a -> a

to achieve parallelization. Since our function ”myroll” with type

myroll
:: (Ix i, Num i) =>

Item

-> Array Int (Int, [(String, Int)])

-> Array i (Int, [(String, Int)l)

is not associative, the foldr part cannot be parallelized. Therefore the only
parallelism we can perform is the "map”.

3 Developing Parallelized Algorithm
3.1 parMap

The first thought we have is to use runPar with parMap instead of the pure
map function. Therefore, we tried with using parMap with runPar, which we
replaced the line

solu = map getbest [1..]
with

solu = map fromJust (filter isJust (runPar \$ parMap getbest [O
..ttlwghtl))

And edited a couple places to using Monad. Then we run with two cores
and the result shown in threadscope is:

o0 e I Functional i pari.eventlog - Tt
File View Move Help

BlkeH @aa
Key | Traces | Bookmarks | Timeline
m— running
— GC

GC waiting setuy
| create thread
seq GC req
| par GC req
| migrate thread
thread wakeup || Heco
shutdown
user message |

| veor
perf counter |

perf tracepoint

[ol create spark

] dud spark
| all overfiowed spark ol
| ol runspark Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |
| fizled spark Total time: 15.88s
Mutator time: 12405
| all Goedspark GCtme: 3485

Productivity: 78.1% of mutator vs total

] 5

|
TUsershiliang/Documents/Parallel Funclional Programming/omeworkidp-pari eventiog (359561 events, 15.8805)

4

Obviously the result is not satisfying. Therefore we tried another attempt.

3.2 Strategy: parList

This time we tried to used strategy with parList to parallelize the code. We
replace

1 solu = map getbest [1..]
with
solu = withStrategy (parlist rdeepseq) (map getbest [0..ttlwghtl])

And below is the result of running the code with 2 cores.
eoe Users/bil q

Functional /dp-par2.eventiog - Ti

B keslQaa

Key | Traces | Bookmarks | Timeline

B running os 05s 1s 158 2 255 3 ass 45 458 5s 555 =
— G et bt e b e b b e b
GC waiting sty
| create thread
seq GCreq
| par GC req
| migrate thread
thread wakeup HECO

user message 4
[hec
pertcounter] LU U RS AMATANCSRTOMVROON OO TR A |
— -
perftracepoint

[ol create spark

| dud spark &
| ol overfowedspark|[i ol
| run spark Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events
fizzled spark Total ime: ~ 5.94s
| Mutator time: B.22s
| ol acedspark GCtime: 2725

Productivity: 54.2% of mutator vs total

>
TUsershilltang/Documents/Parallel Functional Programming/omeworkidp-par2.eventiog (77668 events, 5.941s)

4

We can see that the runtime result is much better than the first version with
parMap.

3.3 Strategy: parBuffer

We tried to further improve the parallel performance. And by looking at

”spark states”, we notices that in previous result, most of the sparks are over-
flowed, as shown below

parList sparks states

Time |Heap | GC Spark stats | Spark sizes | Process info | Raw events
HEC |Total | Converted | Overflowed |Dud |GCd | Fizzled

Total 7470519 301 7443158 0 16609 10451
HEC 0 3638789 20 3628128 0 1274 9366
HEC 1 3831730 281 3815030 0 15335 1085

Therefore, we tried to use parBuffer, which is supposed to help regulating
the number of sparks. So we replace

solu = withStrategy (parList rdeepseq) (map getbest [0..ttlwght])
with

1 solu = withStrategy (parBuffer 100 rdeepseq) (map getbest [O..
ttlwght])

