Parallel Functional Programming Final Project Report - Crossword Solver
Project Team Members: Rose Huang (rh2805) and Biging Qiu (bq2134)

Description: We created a crossword solver for a crossword board with no hints. Given a board
with blanks and blacked out boxes, we searched for the right words to place into the blanks
using brute force, and then introduced parallelism. We selected words of the right length from a
dictionary text file and verified that the solution is right by checking for collisions. We return all
possible solutions.

Data: We are using three test crossword puzzles found online (references below). The
crossword puzzles are 6x9, 7x7 and 9x9 respectively. The word pool used for the search is a
dictionary of 60 words containing all words used in the solutions of the three crossword puzzles
(so each returns at least one solution) plus 20 most common medium-length and short English
words found online. We also created a test with no solution of a very small crossword with a
very small dictionary of 3 words to verify that our crossword solver still works when there are no
solutions.

Strateqy: Fitting words of the right length to board: From the given blanks, which we represent
as the data type Sites with data constructors squares ((x,y) coordinates) and len, we fit words
from the dictionary of the right length into the blank using recursion. Each time we recurse, we
place a word of the right length into the blank and then check against the already filled sites to
verify that each square has only one letter. We do this verification by taking the returned
solution, a list of tuples of Strings and Sites, and check that at each square there is no collision
of letters; if so, we filter out the solution. We recurse until our base case, which is when there
are no blanks left to fill.

Verifying Solution: We verify our solution as we fill in the blanks, pruning out solutions that have
collisions of different letters in the same blank, as described in our strategy. If there isn’'t a
solution with the given dictionary, our crossword solver returns nothing. If there are multiple
solutions, we return all of the unique solutions.

Parallelizing the Solver: After obtaining a list of candidate words of the right length for a blank,
we use parPair to parallelize the solver to continue the search with half the list per thread. Our
parallelization essentially breaks a tree search into two different branches at each level and
solves the branches in parallel. We use rpar to evaluate to WHNF, which is adequate for our
application.

Report on Parallelization:

Test 1:

Bigings—-MacBook-Pro:crossword biging$ time ./crosswordSolver words76.txt test_sitel.txt +RTS -1s -N8
original board:

IXI IXI IXI IXI 1 1 1 1
XU Py
IXI IXI IXI IXI IXI le
XU Uy
XYy oy oy o
U U C N B 'S B
1 1 1 1 IXI IXI IXI 1 1
L e
IXI IXI IXI IX| IX! 1 1
solutions:

[p' 'e' 'r! O T |_
L L S B T Y 7Y
o' 'n! e Iil 'n' 'e!
Ill 1 1 Iil I 1 1 1 Ibl
gl vt f gt o1
Igl lnl 1 1 I 1 Iql 1 1
L I v L L
Y e
W' 'h' ‘it 'gt tht oo
Ipl Iel Irl Ill 1 1 1 1
Irl 1 1 1 1 I 1 1 1 le
o' 'n' 1Y 'i' 'p' et
Ill 1 1 Iil I 1 1 1 Ibl
gl v it f gt o
'g' 'n' ‘'u' ' ' g '
L I Ve L
1 1 1 1 1 1 Ial 1 1 1 1
te! 'p' tg! 'g! gt v

There are limited Threadscope graphs for this test because some time data is too large and
Threadscope is killed trying to display. However, we can look at the time performance to see
that parallelization achieves a speed-up.

1 Core:

real 4m0.394s
user 3m51.535s
sys 0m3.357s

2 Cores:

real 3m29.848s
user 4m39.351s
sys 0m10.091s

; B running
s
GC waiting

| create thread
seq GC req
par GC req
migrate thread
thread wakeup
shutdown
user message
perf counter
perf tracepaint
create spark
dud spark
overflowed spark
run spark
fizzled spark

GCed spark

From 1 core
parallelizatio

Key | Traces | Bookmarks |

Timeline

HEG O

i mect

[«
Time | Heap | GG Spark stats | Spark sizes | Process info | Raw events |
HEC |Total |Converted | Overflowed |Dud [GC'd | Fizzled

Total 22 11 o o 4 7

HECO 22 0 0 0o 4 7

HEC1 0 11 0 0o o0 o0

to 2 cores, there is a ~12% speedup from 4min to 3.5min. This shows that
n does achieve better performance. A total of 22 sparks were created in core 1 and

11 converted in core 2, showing good parallelization.

4 Cores:

real 4m31.123s
user 7m20.470s
Sys 0m31.556s
8 Cores:

real 4m32.557s
user 7m29.513s
sys 0m32.104s

For 4 cores and 8 cores, there is no significant speedup, because of overhead. As we are using
parPair, we expect that only 2 cores are used and 2 cores give the best performance.

Test 2:
Solution:

dyn-160-39-128-152:crossword rosehuang$ time ./crosswordSolver words76é.txt test_site2.txt +RTS -1ls —-N&4
original board:

U

solutions:

R GRS (R
XXX XX XX
R SR LR
XXX I XX

U U U U
XUy ay

oy g

tUtpr gt
's' '1' 'i' 'p' 'p' ‘'e' 'r!'
SETUE U L
'w' 'e' 'd' 'd' 'i' 'n' 'g'
rall I U gl WON Eell ¥
'a' 'd' 'd' 'r' 'e' 's' 's'
't T gt g
1 Core:
real 0m11.066s
user 0m10.837s
sys 0m0.169s
Key|Truoss| | Timeline)
m—running] 0s 1s 2 3s 4s 55 6s 7s 8s 9 108 =
— GC | . . L . L L i . . |
GC waiting iy
| create thread !
seq GG req
| par GG req
| migrate threac
thread wakeuy gnm I
| shutdown
| ueormessagelflie S
| porf counter Time | Heap | GG Spark stats | Spark sizes | Process info | Raw events
| perftracepoint || \iee | Total [Converted | Overflowed |Dud |GC'd |Fizzled
| all createspark | |
| ol dudspark HECO 16 0 0 o 4 12
| ll overfiowed sp
I Ul rncnanc Ad|
[T —]
[CrosswordSolver.eventiog (766979 events, 11.0485) 2

2 Cores:

real 0m8.341s
user 0m14.086s
sys 0m0.263s

Key | Traces | Timeline a
BN running [0s 05s 1s 158 25 255 3s 355 4 455 55 555 6s 655 7s 755 8s =
— GC e e e B e e B e R I

GC waiting sty
| create thread

seq GCreq
| par GC req
I migrate threac

thread wakeuf
shutdown
user message
perf counter
perf tracepoint
all create spark
ol dudspark
|l overflowed sp.
all runspark
all
all

fizzled spark

|
|
|
|
|
|
|
|
|

GCed spark
[I]

I«

[1]

Time | Heap | GG Spark stats | Spark sizes | Process info | Raw events |
d

HEC10 6 0 o o o

[erasswordSolvar avantio

a1 (779571 avanis R ADAS) p)

From 2.5 s to 6.5 s, we see great parallelism with 2 cores (zoomed in pic below). 16 sparks
were created in total, all in the first core and 6 sparks were converted in the second core. This
shows an efficient use of sparks. There is also a speed up from 11.066s to 8.341s, a 24.6%
speedup. The first core is not used for the last few seconds, most likely because of the
non-parallel conversion of our crossword to a printable string form.

4.1625s 4.163s 4.1635s 4.164s 4.1645s 4.165s 4.1655s 4.166s 4.1665s
)

4 Cores

real 0m9.764s
user 0m22.015s
sys 0mO0.878s

Key | Traces | | Timeline
I running Os 1s 2s 3s ds 5s Bs 7s 8s
. GC I i I I L L L L

GC waiting Activity

| create thread i] - - — - ! L.
seq GC req |
I par GC req

l migrate thread

readwakaup || = L O ML I

shutdown

user message

perf counter

T
g

perf tracepoint
|,1L create spark i ez
|l cudspark O L O A
| all overfiowed spark

|l ronspark vess [T I |
| all fizzled spark
|A GCed spark [0]

Time | Heap I GC Spark stats | Spark slzes| Process info | Raw eventsl
HEC |Total | Converted | Overflowed |Dud |GC'd | Fizzled

Total 16 8 0 0 3 5

HECO 0 2 0 0 0

HEC1 0 1 0 0 0 0

HEC2 o 5 o 0 0 0

< »]| HEC3 16 0 0 0 3 5
IAVN_1AA_20_12R_1R7rrncewnrd racchiann® fthreadernna nev rraccwnrdSnluar avantlinn

For 4 cores, the second core is not utilized at all. The other 3 cores run in parallel from
approximately 1.25 s to 4.5 s. Using 4 cores is also slower than using 2 cores due to extra
overhead.

original board:

X
X
'
Xt
X
'
X

3
o
i
'
'
X
X

Iy

solutions:

'
X
'

'
o
X
X!
Xt
X
i

g

Test 3:
Solution:

gt v 1 oagt
_ 'al 'g' ‘e’
Gy ' 'rt it tp d'otito'rtott d' 'r' 'i' 'p e' 'y' 'e' 's g it g
N P P e R R P I S I Tl T gt o g g Ao ok oE
o T i T tal 1gt te' td' 't g 'yt i g rar tgr ter d' oot it e L tpt
Coroapron g g g g I AT R R P R h' 'e' 'r
:x: .i. X! .i. X! (gt it tpr ittt i agr 110 e T A A P R P TR PR tal
g oy gy o |p| T oagr gt otgrt 10 oigr o $roipl o1 ugr iglotgrl 1o agr U t a p
Th' te! ! Tgl 11 igl oyt oigi gl Th! tg! tp! tgl b1 tgn o pptorgn ag E
g o aya
s gl totoagt ot g g Tttt agr g g _
] Itl Ial Ipl Iel 1 1 Idl Iel Ibl Itl Itl Ial Ipl Iel i i Idl Iel Ibl Itl Idl Iil Irl
L 1L ol gt 1oy
- . - [I
g Idl Ill Irl Itl 1 1 Iel 1 1 Iel ISI Idl Ill Irl Itl 1 1 Idl I1I Irl Itl Ial Igl Iel
Vg g g g y r
i S B0 g I T e T R P R I gl T gt g g gt it ip
o e T e rat tgtote! 'dr ot o'gt otut o 'ivorte tal gl ote! 'dr o orgr otu' tirorge
AR R - B o R R BB i il NS,
o u 9 s - e r
- Tgr oAt orpt gt oo i oagr 110 g tdr otirorpt gt oo aqroagr i1 g
i 5 I1| |d| Ill Iel 1 ' Ipl 1 1 Itl Ihl Iel ' 1 IOI 1 1 ' 1 Ipl ' 1 Itl Ihl Iel 1 1 IOI 1 1 'a' . : 'a'
.h. .e. vy |°| vt Th' te! p! Tgl 1ot rgr oyt oigr g Tht 1@l tptotgl o1 oagr iy agr i 'ttt ta' 'p!
5 i Itl Irl Iul Itl Ial 1 1 Ial 1 1 1 1 1 1 Iul 1 1 |°| Ial 1 1 Ial 1 ' 1 1 1 1 Iul] 1 Iol -
T O L R I N IR H A R
L 4 L n r 1
= . _ _ _ IOI 1 1 1 1
Vg g p g b tdrotrt TPt otpr o1 rgr tyr 1gr g I EEN TN T T U TREE CRRE-TRNE :a: :g: :e:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ll ! | ! ' ! ! 1 ! ! 1 ' 1 1 1 1 1 1
Vg g o c 0 a 0 c 0o 0o 1'
Vo agr g i g 'a' 'g' 'e' 'd' ' ' 'q' 'u' 'i' 't! 'a' 'g' 'e' 'd'" ' ' 'q' 'u' 'i' 't rge vie g
o .3. Cgr Voo g g g v gt I o AT LI gl %3 [T B T
G g 11 e tdr oAt orpt g oo airoagr 110 g L L R T B ST I S PN Tht 1g! it
Tht et 1ot oigr v I e =Y I - LI U oipl U1 ugr tptoigl 10 oagl o1 gt oigt
Vg g g i ThY te! 'p' o' ' 1 igrorptoagnorgn ‘h' 'e' 'r' 'o' ' ' 't' 'r' 'o' 't "t g pe
1 1 1 1 |u| 1 1 |0| Ial 1 1 Ial 1 1 1 1 1 1 Iul 1 1 I°I 'a' ' ! 'al ! 1 1 1 1 ' Iul 1 1 IOI &
1 1 Idl |e| Ibl Itl Itl Ial 1 1 Iel [1 Idl IEI Ibl Itl '-t' 'a' ' ' IEI 1 1 Inl IEI ISI Itl _
d = - - - Idl Iil Irl
L 2z r 7 IOI 1 ¢ Iul
1 1 Idl |1| |r| Itl Idl Ill Irl Itl 1 1 Iel Iyl Iel ISI 'd' 'l' 'r' 't' ' ' 'd' '1' 'r' 't' Ial Igl Iel
g g LI T R A B R S R I o' vt oty rr g 1 gt A
Vo i i i e o et e A o et a asa i vat gt te' 'd' ' g tu' 'ir 't r
1 1 Iql Iul |l| |t| Ial Igl Iel I?I 1 1 lql |u| lll |t| ' ' 'g' 1 ! |i| |O| IEI 1 1 1 1 1 1 Idl Iil Irl
o g T 10y g 2 9 Vg
[Y R T tdr ot tpt gt oo rfroagr g vt L L TR LB L B I LR Iy LN]
gt el 11 oigt I L U B B P S L LB - Y L :h: :e: :r:
T P Tht Te! Tp' dol tooagr dpi oigr ign ThY ! tp' gl 1ot ongr iptoagro g a a
Ve ag g I T T R T N AR P P e e T LY ig' gt ipt
I P T A ‘tr tat 'p'ote' ' otd' te' ‘bt 't ! ta' 'p! te' ' ' tpt tgt tgr g |
T } i Idl Irl Iil
gt 11t
'al 'g' ‘e’
Vg
1 Core: O i
Vo
p
real 0m0.166s TR
gt v oage
user 0m0.142s 0 g)
sys 0mO0.015s]
Key | Traces | Timeline
I running Os 50ms. 0.1s
_— G . . . ! L L
GC waiting Activiy
| create thread
seq GC req
I par GC req
I migrate thread
tesdwler O R AR TN (10 0
| shutdown
| user message
I perf counter
| perf tracepoint

| all create spark
| all dudspark

[«

]‘i d spark
|_~“_ run spark
IA fizzled spark
[A‘L GCed spark

HEC 0 48

Time |Heap | GG Spark stats | Spark sizes | Process info | Raw events |

[
[
[
o'
[
io!
[
[
[
[
[
[
ot
[
Tht
[
[
[
[
[
[
ig!
[
Th!
[
[
[
[
[
[
ot
[
o'
[
[
[
[
[
[
0!
[
io!
[
[
[

+oHCca

4o Hca

+®HCca

OO0 H@Q H

et

it
g
K
!
ig!

gt

g

2 Cores:

real 0mO0.137s
user 0mO0.150s
sys 0mO0.015s

e

0Os 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 0.1s 0.11s
L L 1 L | L 1 1 L I
Activity
- (VR UM O O Y OO 0 Y RO 1 |
[| AN WO 0 R | . 0 I (I

[

Time | Heap | GC Spark stats | Spark sizes | Process info | Raw events
HE otal ' led

HECO 0 22 0 0 0 0
HEC 1 48 0 o 0 4 22

As with the first two tests, there is a small performance speedup from 1 core to 2 cores from
0.166s to 0.137s (17.5% faster). A total of 48 sparks were created in the second core, 22 of
which converted in the first core. However, the graph indicates large chunks of time in which the
two cores are not being utilized in parallel.

4 Cores:

real O0mO0.195s
user 0mO0.194s
sys 0mO0.033s

Key | Traces | | Timeline
E running 0s 50ms 0.1s 0.15s
—— | . L . . | . L L . |
GC waiting acay
| create thread - 7 o | 7
seq GG req
| par GC req
| migrate thread
thread wak
o AR NNV (1 ‘ONNINE 0 OCAT T (1
| shutdown] I I
| user message
HECH
| ertcouner 1N 0 11
| | |
| perftracepoint 4
| all createspark || nece
| all dudspark \l 1] i 1 L
l _all overflowed spark
reca
lall rumspar NN 0 (UM N R m
| all fizzled spark
| ol GCedspark = ¢
<
Time | Heap | GG Spark stats | Sparksizes | Processinfo [Rawevents|
HEC |Total |Converted | Overflowed |Dud | GC'd |Fizzled
e e —
HEC 0 48 0 0 0 3 22
HEC1 0 4 0 0o 0 o0
HEC2 0 4 0 0 o 0
] 3j| HEC3 0 15 0 o o o

As with the first two tests, performance with 4 cores is worse than with 2 cores, showing 2 cores
may be optimal for parPair.

Comparison between parPair and parList

We tried two versions of parallelism, using parPair and parList respectively (see the Appendix

for parList implementation). With parList, we originally thought we achieved parallelization.

File View Move Help

Blehsl&aq

Key | Traces | Bookmarks | Timeline

W running g

GG sty
GC waiting

| create thread
seq GCreq

| parGC req

[migrate thread Heco
thread wakeup

| shutdown

| user message e

| perf counter

| perf racepoint feca

| L create spark

| ol dudspark

| all overflowed spark
| all runspark

| L fizzled spark

| ol GGed spark

il

This is the graph plotted with 8 cores. At first glance it seems there is parallelization across 4
cores. However, a large number of sparks created were garbage collected or fizzled. There was

Grosswordsolver evention

15s

1 A 0 0 00O 00 Y00 R0 O 0O 0

O O T AT

I

(e

Time | Heap [GG Spark stats | Spark sizes | Process info | Raw events

HEC |Total |Converted |Overfiowed [Dud [GCd | Fizzled
Total 3743532 383824 o 0 3341742 17966
HEGO 0 20601 o o 0 13222
HEC1 0 1772 o 0 0 701
HEC2 0 207 o 0 o 183
[»]| HEC3 0 143 o 0 0 93

646737 events, 17.4475)

also no performance improvement going from 1 core to 4 cores.

[

File View Move Help

crosswordSolver.eventlog - ThreadScope

BllkeRsl @QQ

Key I Traces | Bookmarks | Timeline

I running
N GC

GC waiting
create thread
seq GC req
par GC req
migrate thread
thread wakeup
shutdown
user message
perf counter
perf tracepoint
create spark
dud spark
overflowed spark
run spark

fizzled spark

Aetiity

HEC1

[N B on
1 1 L] [] 1]] [} I I 1 1 1

l

I

I

Running again on 4 cores. When we zoomed in, we noticed that actually only 1 core was
utilized! This is despite the illusion from the earlier graphs that 4 cores were occupied. Hence
there is actually no parallelization and explains the lack of performance improvement.

Results on parList parallelization on Test 2:
1 Core:

real 0m12.523s

user 0m11.783s

sys 0m0.294s

4 Cores:

real 0m19.524s
user 0m26.610s
sys 0m2.607s

8 Cores:

real 0m17.550s
user 0m24.377s
sys 0m2.924s

We believe that parList could be used to achieve parallelization, however, our implementation

was probably wrong. parPair achieves a much more reasonable outcome with true
parallelization.

APPENDIX:

Below is the code and results for when we tried to implement parList.

1 solve' :: Map.Map Int [String] -> [Site] -> [[(String, Site)]]
2 solve'] = [[]]

3 solve' dict (s:ss) =

4 if possWords == []

5 then error ("No words of length " ++ show (len s)

6 else do

7 solveAgain <- solve' dict ss

8 filter verifySquares

9 (map (\x -> trySolve x ++ solveAgain) possWords ‘using’ parList rseq)
10 where possWords = Map.findWithDefault [] (len s) dict
11 trySolve :: String -> [(String, Site)]
12 trySolve thisword = do
13 return (thisword, s)

The next 2 pages include the final code we submitted with the parPair implementation.

W ~J o O W N

o g OO DD DD DD WWWWWwWWwWww DN NN NN PR R R R
o U W NP O W oo oYW NP O W oo dY0sW N R O W o dY0sW DN R O W doY0sW NP O Y

{_

PFP Final Project

Names: Rose Huang (rh2805) and Biging Qiu (bg2134)
-}

import qualified Data.Map.Strict as Map
import qualified Data.LlList as List
import qualified Data.Matrix as Matrix
import System.IO(readFile)

import System.Environment (getArgs)
import System.Exit(die)

import Data.Ord (comparing)

import Data.Function (on)

import Data.Char (isAlpha, toLower)
import Control.Parallel.Strategies hiding (parPair)
import Control.Monad

type Square = (Int, Int)

data Site = Site {squares :: [Square], len :: Int} deriving (Show,Eq)

data Crossword =
Crossword {wdict :: Map.Map Int [String], sites
deriving (Show,Eq)

-—- convert 1list of strings from site file to list of sites

toSites :: [String] -> [Site]

toSites s = map (\x -> Site {squares = map (\y -> read y:: (Int,

$ words x, len = length $ words x}) s

-—- convert list of strings from dict file to map with length as key and list

-- of words as value
toDict :: [String] -> Map.Map Int [String]
toDict dictWords = Map.fromListWithKey (_ x y -> x++y)

S map (\w -> (length w, [w])) dictWords

-- test to ensure there are no two different letters on the same squares

verifySquares :: [(String, Site)] =-> Bool
verifySquares xs = all allEqual $ groupBySquare xs
where allEqual [] = True
allEqual (x:xss) = all (x==) xss

-- make into list of lists of chars, grouped by squares
groupBySquare :: [(String, Site)] =-> [[Char]]
groupBySquare xs = map (map snd)

$ List.groupBy ((==) “on fst)

S List.sortBy (comparing fst)

$ concatMap makeSgChar $ xs

-- assign each character to a square
makeSqgChar :: (String, Site) -> [(Square, Char)]
makeSgChar (str,s) = zip (squares s) str

-- parallel evaluation in pairs
parPair :: Strategy (a, b)
parPair (a, b) = do

a' <- rpar a

b' <- rpar b

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
29
100
101
102
103
104
105
106
107
108
109
110

return (a', b')

-- return solution of crossword as a list of squares and letters

solve :: Crossword -> [Map.Map Square Char]
solve cw = map (Map.fromList . (concatMap makeSgChar)) solutions
where solutions = List.nub $ solve' (wdict cw) (sites cw)
solve' :: Map.Map Int [String] -> [Site] -> [[(String, Site)]]
solve' _ [] = [[]]
solve' dict (s:ss) = if possWords == []
then error ("No words of length " ++ show (len s))
else do
let (a, b) = splitAt (length possWords “div’ 2)
(aa, bb) = (trySolve a, trySolve b) “using’
aa ++ bb
where possWords = Map.findWithDefault [] (len s) dict

trySolve thiswords = do
try <- thiswords
solveAgain <- solve' dict ss
let attempt = (try, s) : solveAgain
Control.Monad.guard $ verifySquares attempt
return attempt

-- return solution as prettyMatrix String
toMatrix :: Int -> Int -> Map.Map Square Char -> String
toMatrix rows cols solution = Matrix.prettyMatrix
$ Matrix.matrix rows cols getLetter where
getlLetter (i,Jj) = case Map.lookup (i,Jj) solution of
Nothing =-> ' '
Just ¢ -> ¢

-—- reads dict and sites file, construct Crossword, solve
main :: IO ()
main = do
args <- getArgs
case args of
[dictFile, siteFile] -> do
dictContents <- readFile dictFile
siteContents <- readFile siteFile

let dimensions:siteStrings = lines siteContents
processedWords =
map (map toLower . filter isAlpha) (lines dictContents)
solutions = solve
$ Crossword (toDict processedWords) (toSites (siteStrings))

originalBoard = Map.fromList

S zip (concatMap squares (toSites siteStrings)) (repeat 'X'")
case (map (\x -> read x :: Int) $ words dimensions) of
[rows, cols] -> do

putStrLn "original board:"
putStrLn $ toMatrix rows cols originalBoard
putStrLn "solutions:"
mapM_ putStrLn $ map (toMatrix rows cols) solutions
_ -> do die $ "siteFile doesn't include dimensions"
-> do die $ "Usage: ./crosswordSolver <dict file> <site file>"

possWords
parPair

