HipgRap - Report
Bicheng Gao (bg2640) \ Kangwei Ling (kI3076)

Introduction

Grep is a very useful command line tool for search patterns in text-based files.
We would like to implement such a tool in haskell, called HipgRap, for purposes of both
practising programming with haskell and gaining experience on building system tools
focusing on performance. A typical grep tool has three parts: find the files to search,
search patterns in those files, and print the result. Our implementation will focus on the
search of string literals.

Motivation

Current haskell implementation of grep in the library is not efficient enough,
especially when you compare it to other implementation in C(GNU grep) and
Rust(ripgrep). The basic motivation is to use the parallelism feature of Haskell to boost
the execution of reading files, finding matches in each line.

Implementation

We have implemented six versions in total, each focuses on different level of
parallelism, check out the following table for their differences.

File Description

SeqGrap.hs Sequential version of the grep, read the
entire file and run the BM algorithm line
by line.

StaPar.hs Static partitioning version, read the entire

file as SeqGrap.hs, however, it splits the
input into several chunks (we choose 4)
and run BM algorithm on each chunk in
parallel.

DynPar.hs Dynamic partitioning version, similar to
StaPar.hs, it sparks a thread on every line
instead of a chunk of input.

ParIO.hs Parallel 10 version, this one is similar to
the StaPar.hs too. The new thing is that
we add parallel support for the input, we
split the input file in many chunks,
multiple threads will start at different
offset for the input file.

Grap.hs Multiple-file parallel version, it tries to
solve the problem in another level of
parallelism. Many files can be searched at
same time.

SeqHipGrap.hs Another version of SeqGrap that searches
in the whole directory recursively if a
directory is passed as the argument

There are two levels of parallelism in our implementations: file-level parallelism and
line-based/chunk-based parallelism.

The file-level parallelism is used in Grap.hs, since it must efficiently search in multiple
files, which makes us want to introduce concurrency here, so we can search different
files concurrently. We have used explicit parallelism with Channels, forkIO. Specifically,
we create a dedicated thread to traverse the directories and add files that need to be
searched to the channel, and we create several worker threads that read from the
channel to grab files to work on. We spent some time on learning how to implement
such a worker threadpool solution as it is quite different than other imperative language
since we must deal with the monad environment.

Line-based/chunk-based parallelism is used for single file searching, as implemented in
StaPar.hs, DynPar.hs and ParIO.hs. We split the search on each line/chunk by using the
Parallel library, specifically, rpar, parMap, rseq.

At first, we only implemented the version without the parallelism on the IO, it turns out
they are pretty slow, and even can not compete with the sequential version. Since we
chose Boyer Moore algorithm for string matching, the running time is linear to the input
size, which makes the IO become the bottleneck. After some investigations, we found
Haskell supports the POSIX way of reading. It’s possible to read like “pread ", we can
specify an offset to a file descriptor, and reading a specific number of bytes from that
position. By this way, we can make multiple threads starting from different offset and

reading their own parts. It makes a pretty good performance improvement, and beaten
all other versions. The following table is the performance test result.

Single File Test Results

Implementation | Total time Test parameters | All running on a
file with size
around 25MB.

SeqGrap.hs 0.224 S +RTS -N1-Is -s

StaPar.hs 0.263 s +RTS -N4 -Is -s

DynPar.hs 0.514 s

ParIO.hs 0.139 S

Grap.hs 0.627s

Single File Test Thread Scope Results

- SeqGrap.hs

@ @ seq_ver.eventlog - ThreadScope
File View Move Help

Blleesllaa e

Key |Traces | | Timeline

I running 0s 50ms 0.1s 0.15s

[ro—e L L L L | L L L 1 1 I L L
GC waiting Activity

| create thread

seq GC req
I par GC req
I migrate thread
preaduakese || = I T
| shutdown
| user message |
] perf counter
| perf tracepoint
] all create spark
I ol dudspark
] ol o spark T 2|
] ol run spark Time | Heap |GC | Spark stats | Spark sizes | Process info | Raw events
| all fizzled spark Total time: ~ 0.21s
Mutator time: 0.20s
| ol GCedspark GCtime: 001s
Productivity: 95.6% of mutator vs total
I —
[Seq_ver svenog (34506 events, 0.2105)

StaPar.hs

o0 e
File View Move Help

sta_par_ver.eventlog - ThreadScope.

Blkraslaaa

Key | Traces | Bookmarks | Timeline

B running
— CC
GO waiting rey

| create thread

s6q GC req
| par GG req
| migrate thread

thread wakeup || weco
| shutdown
| user message
| perf counter e
| perf racepoint
| el create spark wec2
| ol dud spark]
| all overfiowed spark [

HEGS

| adl runspark
| fizzled spark
| =ll 6Cedspark

| II I 100 TN T T ll[\ll\ i

I L, I Y AT

I - Ll

LT T T TR LU HII i

) 0 (LT T TR |

Al

Ix]

Time | Heap | GG

| Spark stats | Spark sizes | Process info | Raw events

T I—
sla_par_ver.evenilog (32990 events, 0.2435)

Totaltime: 0.245
Mutator time: 0.15¢
GC time: 0.10s
Productivity: 60.8% of mutator vs total

DynPar.hs

File View Move Help

dyn_par_ver.eventlog - ThreadScope

Blkeasl @@

Key | Traces | Bookmarks | Timeline

B running
— CC
GO waiting pey

| create thread

seq GC req
| par GC req
| migrate thread

thread wakeup | | weco

| shutdown
| user message

HeG 1
| perf counter

perf racepoint

| adl create spark Hec2
|_.J_ dud spark f
| all overfiowed spark]
| adl runspark o

| oll fizzled spark
| Ul ©Ced spark

| N S— | A
| URANANRN_—_—
| AR

I

Al

1]

Time | Heap | GG | Spark stats | Spark sizes | Process info | Raw events

T I—

Totaltime: 0.508
Mutator time: 0.36s
GC time: 0.14s
Productivity: 72.8% of mutalor vs total

[dyn_par_versventog (106043 events, 04885

ParlO.hs

File View Move Hel

P

par_io_ver.eventlog - ThreadScope

Blkeesl & e

Key | Traces | Bookmarks | Timeline
BN running
m— GC
GG waiting seimey
| create thread
seq GC req
| par GG req
| migrate thread
thread wakeup || weco
| shutdown
| user message
wec
| perf counter
| perf tracepoint
| adl create spark HEG2
| il dud spark
| sl overfiowed spark]
veca
| adl runspark
| ol fizzled spark
| wll GCed spark
Bl |
Total fime:
Mutator time:
GC time:
Produciivity:
1 —
[Par_lo_ver eventiog (30379 events, 0.128s)

Grap.hs

0s 10ms. 20ms 30ms d0ms 50ms. 60ms. 70ms BOms 90ms 0.1s 0.11s

I , R O AR ORI 110
| O ER T

1 AT A A A AT 11O | 1

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

0.13s
0.11s
0.02s
85.3% of mutator vs total

File View Move Help

Grap.eventlog - ThreadScope

Elkfesl &Qqa

Key | Traces | Bookmarks | Timeline
N running 0Os 50ms 0.1s 0.15s 0.2s 0.25s 0.3s 0.35s 0.4s 0.45s 0.55 0.55s =
— G PRI IR IR HNII IR SRR I ARV I SR R B
GC waiting Acivity | | | |
| create thread
s0q GC req
I puraom M_“_L_—_
| migrate thread
thread wak
roanakash 11 = I 1 T W RO (LU AR LA
| shutdown WYL 11 iy L B 1
| user message
e
| petoounter {07000 O BNV UL MR ECEEIURRUIIL I
| perf tracepoint .
| all create spark HEG2 I
[s L —
| sl overfiowed spark |1
neca
| all roncoark | 0010 O T AT BN (CURCIMTOUIE L ONUNNRANT I
| ol fizzled spark
| =il GCedspark
’ o
Time | Heap | GG | Spark stais | Spark sizes | Process info | Raw events
Total time: 0.80s
Mutator time: 0.33s
GCtime: 027s
Productivity: 55.5% of mutator vs total
I —
[Grap.eventiog (104515 events, 0.6005)

As we can see from the results, the ParlO version which parallels the chunk reading of
the file runs fastest. The 10 part is indeed the bottleneck of grep since the string matching
algorithm runs pretty fast enough compared with 0.

Multi-files Searching Test Results

Implementation Total time Parameter
Grap.hs 12.737 S +RTS -N4 -Is -s
SeqHipGrap.hs 15.955 S +RTS -N1-Is -s

Searching for “fair” in
linux kernel source

Multi-Files Test Thread Scope Results

- Grap.hs

[] []
File View Move Help

Grap.eventlog - ThreadScope

AR

Key | Traces | Bookmarks |
EE running
GG

GO waiting
| create thread
s6q GC req

| par GC req
| migrate thread

thread wakeup

| shutdown
| usermessage
| perf counter
| perf tracepoint
| all create spark
| oll dud spark

| adl overfiowed spark

| adl runspark
| fizzled spark
| oll GCed spark

Timeline

HEGS

Rl

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

1 —

[Grap eventiog (2532970 ever

Total time:

12,625

Mutator time: 10.985

GC time:

1.63s

Productivity: 87.0% of mutator vs total

15, 12.6195)

- SeqgHipGrap.hs

@ SeqHipGrap.eventlog - ThreadScope
File View Move Help

AR

Key | Traces | Bookmarks | Timeline

= unning os 55 105
— CC I . 1 1

GC waiting peamy
| create thread
s56q GC req
| par GC req
| migrate thread
thread wakeup || weso
O O D
| shutdown ILLNRE Ly
| usermessage
| perf counter
| perf tracepoint
| all create spark
| oll dud spark
| all overfiowed spark |
| adl runspark
| ol fizzled spark
| il GCed spark

Rl

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

Totaltime: 15935

Mutator time: 14.83s

GC time: 1.41s

Productivity: 93.1% of mutator vs total

I —

[SearipGrap evenliog (2088465 events, 15 9339)

For recursively searching in multiple files and directories, our parallel or
concurrent version Grap.hs slightly beat the sequential version. We actually expect its
performance to be much better than the sequential version. We speculate it is because
our implementation brings too much overhead as to the sequential version.

Remarks

One thing remaining is to solve the corner cases that one line might be split into
multiple chunks for our Parallel IO version, the simple way is to concatenate the last line
of i-th chunk and first line of i+1-th chunk, and check it separately. Since we only split
the input into 4 chunks, here we ignore its influence to the performance.

Code Listing

SeqGrap.hs

import System.Environment

import Data.Maybe

import qualified Data.ByteString as B

import qualified Data.ByteString.Char8 as BC8
import qualified Data.ByteString.Search as BS

solve :: BC8.ByteString -> BC8.ByteString -> Maybe BC8.ByteString
solve pat text
| check == True = Just text

| otherwise = Nothing

where check = not . null $ BS.indices pat text

printMaybe :: Maybe BC8.ByteString -> IO ()
printMaybe (Just x) = BC8.putStrLn x
printMaybe Nothing = return ()

main :: IO ()
main = do
[pat, filename] <- getArgs
contents <- B.readFile filename
let res = map (solve (BC8.pack pat)) $ BC8.lines contents
mapM_ printMaybe (filter 1isJust res)

StaPar.hs

import System.Environment

import Data.Maybe

import qualified Data.ByteString as B

import qualified Data.ByteString.Char8 as BC8
import qualified Data.ByteString.Search as BS
import Control.Parallel.Strategies

import Control.DeepSeq

solve :: BC8.ByteString -> BC8.ByteString -> Maybe BC8.ByteString

solve pat text

| check
| otherwise

where check =

Just text

Nothing

not .

null $ BS.indices pat text

printMaybe :: Maybe BC8.ByteString -> IO ()
printMaybe (Just x) = BC8.putStrLn x
printMaybe Nothing = return ()

IO
do

main

main

O

[pat, filename] <- getArgs

contents

let as

<- B.readFile filename

BC8.1lines contents

len
(a, bs)
(b, cs)
(c, d)

sol

length as "div’ 4

splitAt len as
splitAt len bs

= splitAt len cs

runEval $ do

al
bl
Cl

d 1

<- rpar (force
<- rpar (force
<- rpar (force

<- rpar (force

(map
(map
(map
(map

(solve
(solve
(solve

(solve

(BCS.
(BC8.
(BC8.
(BC8.

pack pat))
pack pat))
pack pat))
pack pat))

a))
b))
c))
d))

_ <= rseq a'
_ <- rseq b'
_ <- rseq c'
_ <= rseq d'
++ b' ++ ¢!

return (a' ++ d')

-- return (length a' + length b' + length c' + length d')

mapM_ printMaybe (filter isJust sol)

-— print sol

DynPar.hs

import System.Environment
import Data.Maybe
import qualified Data.ByteString as B

import qualified Data.ByteString.Char8 as BC8
import qualified Data.ByteString.Search as BS
import Control.Parallel.Strategies hiding (parMap)

solve :: BC8.ByteString -> BC8.ByteString -> Maybe BC8.ByteString
solve pat text

| check = Just text

| otherwise = Nothing

where check = not . null $ BS.indices pat text

printMaybe :: Maybe BC8.ByteString -> IO ()
printMaybe (Just x) = BC8.putStrLn x
printMaybe Nothing = return ()

parMap :: (a -> b) -> [a] -> Eval [b]

parMap _ [] = return []

parMap f (a:as) = do b <- rpar (f a)
bs <- parMap f as
return (b:bs)

main :: I0 ()
main = do
[pat, filename] <- getArgs
contents <- B.readFile filename
let res = runkEval (parMap (solve (BC8.pack pat)) $ BC8.lines contents)
mapM_ printMaybe (filter isJust res)
-- print $ length res

ParIO.hs

{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE PackageImports #-}
{-# LANGUAGE ScopedTypeVariables #-}

import System.Environment

import Data.Maybe

import qualified Data.ByteString as B

import qualified Data.ByteString.Char8 as BC8

import qualified Data.ByteString.Search as BS

import Control.Parallel.Strategies

import Control.DeepSeq

import qualified System.Posix.IO as PIO

import qualified "unix-bytestring" System.Posix.IO.ByteString as PIOB
import System.Posix.Types

import qualified System.Posix as P

solve :: BC8.ByteString -> BC8.ByteString -> Maybe BC8.ByteString
solve pat text

| check = Just text

| otherwise = Nothing

where check = not . null $ BS.indices pat text

printMaybe :: Maybe BC8.ByteString -> IO ()
printMaybe (Just x) = BC8.putStrLn x
printMaybe Nothing = return ()

getFileSize :: String -> IO FileOffset
getFileSize path = do

stat <- P.getFileStatus path

return (P.fileSize stat)

main :: IO ()

main = do
[pat, filename] <- getArgs
filesize <- getFileSize filename

fd <- PIO.openFd filename PIO.ReadOnly (Just (CMode 0440)) PIO.defaultFileFlags

let chunk_size_bt::ByteCount = fromIntegral (filesize “div’ 4)
let rm_bt::ByteCount = fromIntegral filesize - 3 x chunk_size_bt
let chunk_size_off::FileOffset = filesize “div' 4

ca <- PIOB.fdPread fd chunk_size_bt 0

cb <- PIOB.fdPread fd chunk_size_bt chunk_size_off

cc <- PIOB.fdPread fd chunk_size_bt (chunk_size_off * 2)

cd <- PIOB.fdPread fd rm_bt (chunk_size_off * 3)

let sol = runEval $ do
a' <- rpar (force (map (solve (BC8.pack pat)) $ BC8.lines ca))
b' <- rpar (force (map (solve (BC8.pack pat)) $ BC8.lines cbh))
c' <- rpar (force (map (solve (BC8.pack pat)) $ BC8.lines cc))
d' <- rpar (force (map (solve (BC8.pack pat)) $ BC8.lines cd))

_ <- rseq a'
_ <= rseq b'
_ <- rseq c'
_ <= rseq d'

return (a' ++ b' ++ c' ++ d')
-- return (length a' + length b' + length c' + length d')
mapM_ printMaybe (filter 1isJust sol)

-— print sol

Grap.hs

import Control.Monad(forM_, forever)

import Control.Concurrent.STM

import Control.Concurrent(forkIO, forkFinally, threadDelay)

import Control.Parallel

import Control.Parallel.Strategies(parMap, rpar)

import System.Directory (doesDirectoryExist, getDirectoryContents)
import System.FilePath ((</>))

import qualified Data.ByteString.Char8 as B

import qualified Data.ByteString.Search as BS

import System.Environment(getArgs, getProgName)

numOfWorkers = 4

grabFiles :: FilePath -> Bool -> TChan (Maybe FilePath) -> IO ()
grabFiles fpath recursive chan = do

walkDir fpath recursive

-- add terminators

forM_ [0..numOfWorkers-1] $ _ -> atomically $ writeTChan chan Nothing

where

fileFilter fname = head fname /= '.'
walkDir :: FilePath -> Bool -> IO ()
walkDir path recursive = do
isDir <- doesDirectoryExist path
if disDir
then do
names <- getDirectoryContents path
let properNames = filter fileFilter names
forM_ properNames $ \fname -> walkDir (path </> fname) recursive

else atomically $ writeTChan chan (Just path)

runGrap :: String -> FilePath -> IO ()
runGrap pat filepath = do

jobChan <- newTChanIO

outChan <- newTChanIO

let bpat = B.pack pat

forkIO $ grabFiles filepath True jobChan

-- start workers

forM_ [0..numOfWorkers-1] $ \i -> forkIO $ runWorker i jobChan outChan bpat

-- gather result and print
printResults outChan

runWorker :: Int -> TChan (Maybe FilePath) -> TChan Output -> B.ByteString -> IO ()
runWorker wid jobChan outChan pat = runLoop
where
runLoop = do
filename <- atomically $ readTChan jobChan
case filename of
Just fname -> do
searchInFile pat fname outChan
runLoop

Nothing -> atomically $ writeTChan outChan Terminated

searchInFile :: B.ByteString -> FilePath -> TChan Output -> IO()

searchInFile pat fname outChan = do

content <- B.readFile fname

let auglLines = zip [1..] $ B.lines content
matches = filter (\al@(_, line) -> not . null $ BS.indices pat line) auglLines

atomically $ writeTChan outChan (Matches fname matches)

printResults :: TChan Output -> IO ()
printResults outChan = loop O
where
loop i =
if i == numOfWorkers
then return ()
else do
output <- atomically $ readTChan outChan
case output of
Terminated -> loop (i + 1)
Matches fpath results -> do
forM_ results $ \(ln, txt) -> putStrLn $ fpath ++ ":" ++ show
In ++ ": " ++ B.unpack txt

loop 1

data Output = Terminated | Matches FilePath [(Int, B.ByteString)]

main :: I0 ()
main = do
[pat, filename] <- getArgs

runGrap pat filename

SeqHipGrap.hs

import System.Environment

import Data.Maybe

import qualified Data.ByteString as B

import qualified Data.ByteString.Char8 as BC8

import qualified Data.ByteString.Search as BS

import System.Directory (doesDirectoryExist, getDirectoryContents)
import System.FilePath ((</>))

import Control.Monad(forM_, forever)

solve :: BC8.ByteString -> BC8.ByteString -> Maybe BC8.ByteString
solve pat text

| check == True = Just text

| otherwise = Nothing

where check = not . null $ BS.indices pat text

printMaybe :: Maybe BC8.ByteString -> IO ()
printMaybe (Just x) = BC8.putStrLn x
printMaybe Nothing = return ()

main :: I0 ()

main = do
[pat, filename] <- getArgs
let bpat = BC8.pack pat

grapFiles filename True bpat

grapFiles :: FilePath -> Bool -> BC8.ByteString -> IO ()
grapFiles fpath recursive pat = walkDir fpath recursive
where
fileFilter fname = head fname /= '.'
walkDir :: FilePath -> Bool -> IO ()
walkDir path recursive = do
isDir <- doesDirectoryExist path
if dsDir
then do
names <- getDirectoryContents path

let properNames = filter fileFilter names

forM_ properNames $ \fname -> walkDir (path </> fname) recursive

else grap path pat

grap :: FilePath -> BC8.ByteString -> IO ()
grap fpath pat = do
contents <- B.readFile fpath
let res = map (solve pat) $ BC8.lines contents

linedRes = zip [1..] res

finalRes = filter (isJust . snd) linedRes

forM_ finalRes $ \(ln, txt) -> putStrLn $ fpath ++ ":" ++ show 1ln ++ ": ' ++
BC8.unpack (fromJust txt)

