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Overview 
 

For my project, I wrote a Haskell implementation of the D* Lite 
algorithm. Developed by Sven Koenig in 2002, D* Lite is a search 
algorithm in the vein of A* search whose aim is to determine a 
path between an agent’s location and a designated goal state. 
Unlike A* search, however, D* Lite can importantly be used for 
navigation in unknown terrain, meaning that the traversability 
of states are not known ahead of time. For this reason, D* Lite 
is utilized predominately in applications of robot navigation, 
whereby the locations of obstacles are determined on-the-fly 
using the robot’s sensors. 
 
As a high-level description, the D* Lite algorithm initially 
assumes that the state space does not contain obstacles. With 
this assumption in mind, it calculates an ideal shortest path to 
the goal state. The agent then follows that path until a new 
obstacle is encountered. At this point, state-specific heuristic 
information is updated and new arc costs are calculated between 
locally affected states. The shortest path is replanned, and the 
search continues until the goal state is reached. 
 

Implementation 
 

This section details the implementation specifics of my program. 
 
First, the D* Lite algorithm uses a priority queue to hold 
states whose heuristics may need to be updated. I found that 
none of the readily available priority queue implementations for 
Haskell fit my needs for D* Lite’s priority queue, so I wrote my 
own priority queue data type called MyPrioQueue in 
myPrioQueue.hs (using a hash map and set), along with a number 
of functions to modify an instance of my queue type. 
Importantly, writing a custom priority queue implementation 
allowed me to define and optimize certain operations that the 
algorithm performs frequently: 
 

• The remove function removes an arbitrary state from the 
queue in O(logn) time, where n is the number of items in 
the queue. There is no analogous function defined in the 
Data,Heap or Data.PQueue packages. 



• The insert function adds a state-priority pair to the queue 
in O(logn) time (same as Haskell’s existing 
implementations). 

• The findMin function returns the state-priority pair in the 
queue with the minimum priority. It runs in O(nlogn) time. 
The analogous function in Data.Heap runs in constant time, 
but only returns the minimum value without its associated 
priority. 

• The member function returns a boolean indicating whether a 
state is present in the queue in constant time. There is no 
analogous function defined in the Data,Heap or Data.PQueue 
packages. 

• The empty function returns a boolean indicating whether the 
queue in empty in constant time (same as Haskell’s existing 
implementations). 

 
My implementation of the actual D* Lite algorithm is defined 
within dstar.hs. As outlined in my proposal, the file contains a 
top-level function that expects input from the user 
corresponding to the size of the map, the start and goal states 
of the search problem, and the obstacle locations (specifics on 
how to run the program are presented in the README). It prints 
all of the successive paths proposed by the algorithm during the 
course of its execution. The final path printed to the console 
is a path from the start to goal states that navigates around 
all of the map’s obstacles. 
 
Additionally, using record notation, I defined a data type 
called SearchState that contains all of the parameters of the 
search problem. The state monad is crucial to my implementation, 
allowing the search parameters to be passed between the D* Lite 
functions in the form of a SearchState. Each of the search 
parameters are described below: 
 

• s_queue is the priority queue of the algorithm. 
• s_stats holds state-specific statistics. It is a map 

between states (coordinate pairs) and pairs of doubles (g 
and rhs values) that are used to determine priority. 

• s_obs is a set containing the locations of all obstacles in 
the map. 

• seen_obs is a set containing the locations of all 
previously-encountered obstacles. 

• s_km is a value that is added to priorities in order to 
prevent having to reorganize the priority queue at any 
point. 

• s_start is the current position of the robot. 
• s_start0 is the starting position of the robot. 



• s_goal is the goal location of the robot. 
• s_last is the previous position of the robot. 
• s_height is the height of the map. 
• s_width is the width of the map. 

 
Finally, I tried to stick relatively closely to Koenig’s 
original outline in my implementation of the D* Lite algorithm. 
The key functions of the algorithm are described below: 
 

• driver is the main driving function of the algorithm. Each 
iteration, it moves the robot to a new state and scans for 
obstacles. If any obstacles are found, the queue is updated 
by calling updateQueue. Once updated, the algorithm may 
propose a new path (if the previously unknown obstacle 
blocked the progress of the previous path). The new path is 
determined by calling the computeShortestPath function. 
This process continues until the goal state is reached, 
when all of the proposed paths are returned. 

• updateQueue is the function that updates the algorithm’s 
priority queue when an obstacle in encountered. It loops 
until there are no longer any states in the queue that need 
their information to be updated. 

• updateVertex receives a state as input and updates the 
specific attributes of that state. This function is called 
for each state that updateQueue iterates over. It can 
modify the state’s statistics (g and rhs values) or update 
its placement in the priority queue. 

• computeShortestPath receives a copy of the search 
parameters and builds the algorithm’s current proposed path 
by following the cheapest transitions from the start to 
goal state. It returns this proposed path. 

 
It is important to note that the program expects proper input 
from the user. Namely, the start, goal, and obstacles must 
reside within the extents of the map (for example, (11, 11) is 
not a valid location if the map size is 10 x 10), and there must 
be a valid path to the goal (meaning that no obstacles reside on 
the start or goal states, and there exists a path such that the 
robot can reach the goal from the start state). Cases of 
malformed input will result in undefined behavior. 
 

Parallelization 
 

NOTICE: Although I was unable to achieve a speedup of my 
program through parallelization, the following section will 
serve as documentation of what I attempted. 
 



Originally, I proposed two main areas of interest in my D* Lite 
implementation that I believed could benefit from parallelism: 
 
1. Parallelizing actions that must be performed on all 
child/successor states. 
 
   When a state is removed from the priority queue in D* Lite, 
   its four successor states must be updated and potentially 
   removed as well. In my project proposal, I speculated that 
   each of these operations could safely be performed in 
   parallel, with a separate thread handling each successor. In 
   my code, the action of updating a state’s children is 
   performed using map operations. Thus, my attempt to 
   parallelize this process involved parallelizing these map 
   operations. Two different types of map operations were 
   present in my code: 
 

A. Calls to mapM_ 
 
Outside of printing all proposed paths at the end of the 
program’s execution, all calls to mapM_ are used to 
iteratively apply the updateVertex function to a state’s 
children. These calls appear in the scanUpdate function, 
which is called when new obstacles are discovered, and the 
updateQueueHelper function, which is called by updateQueue. 
 
Once the algorithm was implemented, I realized that these 
map operations are not actually valid candidates for 
parallelization like I originally thought because of the 
way that search parameters are shared across function calls 
via state. The successors need to be updated is sequential 
order. Otherwise, if the operations are performed in 
parallel, updates to the state contents (the search 
parameters) by one thread can be overwritten by another 
thread depending on when the threads access and save state. 
If having multiple threads was absolutely necessary, the 
state could be shared across the threads using something 
like an MVar, which essentially forces sequential behavior 
between threads anyway using a locking mechanism. Thus, 
attempting to parallelize these calls was pointless. 

 
B. Calls to map 

 
These calls appear in three locations (the driver, 
computeShortestPath, and updateVertex functions), and are 
used to calculate a list of costs for moving to each of a 
state’s successors. This is done so that the least 



expensive successor state can be selected, which the 
algorithm moves the robot to. 
 
Originally, I figured that the pure map operations could be 
parallelized using the parList strategy such that a thread 
could calculate each of the successor costs simultaneously. 
The issue with the mapM_ calls is not present this time 
around because computing the cost of a state does not 
require modifying the search parameters. When all of the 
map calls were evaluated using the parList strategy, this 
was the outcome of an example run on four cores (I tried 
combining parList with a number of different strategies, 
but the results were the same each time): 
 

 
 

 
 
The ThreadScope event log showed decent work balancing 
across the four cores with occasional garbage collection, 
and some sparks were even converted into useful work. 
However, despite this, the vast majority of sparks (around 
98%) were garbage collected, and sequential execution of 
the program was still faster (for reference, the same 
search problem on a single core ran in 3.569 seconds). In 
an attempt to address this issue, I reasoned that far too 
many sparks were being created, and that having fewer 
sparks would minimize garbage collection time. My idea was 
to have only the top-level driver function create sparks 
(such that only four sparks are created on each iteration 



of the algorithm). While this worked in reducing the number 
of sparks created, the results were similar to before, with 
the majority of sparks being garbage collected: 

 

 
 
I believe that the cause of this problem is two-fold. On 
one hand, the threads likely do not have enough time to 
perform their computations because the main thread requires 
the results immediately in order to retrieve the minimum 
cost state. Thus, the main thread may perform the 
computations before the sparks can be even be assigned to a 
thread, which is why many end up getting garbage collected. 
Secondly, the problem may also be an issue with granularity 
of the work being assigned to threads. Because the 
operation of calculating a state’s cost can be done very 
quickly, sparking a thread to do it in parallel is overkill 
in a sense, and takes away from the ability of the main 
thread to stay busy. If we look at the activity section of 
the Threadscope output for one core (sequential execution), 
we can see that the activity level is much higher than when 
using four cores: 

 

 
 

This told me that parallelizing any of the map operations 
in my program was excessive and would likely not result in 
the speedup that I desired. 

 
2. Parallelizing the action of computing the current proposed 
path: 
 
   The priority queue is updated in D* Lite each time a 
   previously unknown obstacle is encountered, implicitly 
   creating the next path proposed by the algorithm. However, 
   under normal execution of the algorithm, paths are never 
   fully revealed, as the solution can simply be retrieved by 



   following the cheapest transitions from the start to goal 
   state using the search parameters. Unlike the mapping 
   operations discussed previously, the process of uncovering 
   this path is a perfect candidate for parallelization because 
   it is a “fire-and-forget” activity that has no impact on the 
   execution of the main driving function. Thus, the 
   computeShortestPath function can be sparked in parallel once 
   the queue is done updating after having encountering an 
   object. 
 
   To implement this idea, I tried using a number of different 
   parallel strategies, including rpar, rseq, rdeepseq, and 
   rparWith in combination with rseq and rdeepseq. In each case, 
   I was unable to produce the desired parallel behavior. The 
   computeShortestPath function is fired off in parallel for 
   each iteration of the algorithm in which a new obstacle in 
   encountered. Thus, sparks should be created throughout the 
   lifetime of the program. During trial runs, it is clear that 
   my program creates the correct number of sparks (one for each 
   obstacle). However, ThreadScope shows that these sparks are 
   not created until the very end of the program’s execution, 
   where they immediately fizzle out (presumably because the 
   main thread needs to print the paths at that point and so it 
   does the work itself): 
 

 
 

 
 
   Normally, my program checks that the path returned from 
   computeShortestPath has not already been proposed by the 
   algorithm so that the list of paths printed to the user does 
   not contain repeats (the new path will be the same as the 
   previous path whenever the discovered obstacle does not block 
   the previous path). This means that the main thread requires 
   the path to be completely evaluated immediately, and I 
   speculated that this could have been the reason for why the 
   sparks were fizzling out. However, removing the check for 
   duplicate paths did not alleviate the issue. While more 



   sparks are converted into useful work than before, they are 
   still not created until the end of the program’s execution. 
 
   I am unsure why my program ignores the calls for parallelism 
   when sparks are created. It seems to be an issue with 
   Haskell’s laziness preventing eager evaluation of the paths. 
   Because no parallel work is ever actually performed, the 
   runtime of my program is once again slower using multiple 
   cores than when ran sequentially, likely due to the overhead 
   of establishing multiple threads of execution and the 
   additional time that is wasted when all of the sparks are 
   pointlessly created at the end of the program’s execution. 
 
Finally, the following graph is provided to give an idea of how 
much slower my program runs on multiple cores (when compiled 
with optimizations). Note that the test case listed in the 
README was used for each execution: 
 

 


