
COMS 4995 Project Proposal

Zach Schuermann (zvs2002)

November 22, 2019

Goals

This project’s chief goal is to create a parallelized smoothed particle hydrodynamics (SPH)
solver in Haskell; its implementation will manifest in a two-dimensional fluid simulation. My
twin brother has already implemented a simple 2D SPH solver in C++ 1 – my goal (as any
good brother) will be to implement a faster, parallelized version in a much more elegant
language. This project will attempt to produce a simulation similar to the screen capture in
Figure 1.

Background

Fluid simulation belongs to a rather popular subset of computer graphics as its use is found
throughout gaming, simulation, and animation. The solver in this project will be an pseudo-
implementation of the solver described in Müller’s “Particle-Based Fluid Simulation for
Interactive Applications.”2 This solver is a Lagrangian (particle-based) method (as opposed
to Eulerian, which is grid-based). Briefly, to understand the problem we hope to solve, some
math:

ρi = ρ(ri) =
∑
j

mj
ρj
ρj
W (|ri − rj|, h) =

∑
j

mjW (|ri − rj|, h) (1)

Fpressure
i = −∇p(ri) = −

∑
j

mimj(
pi
ρ2i

+
pj
ρ2j

)∇W (|ri − rj|, h) (2)

Fviscosity
i = η∇2u(ri) = η

∑
j

mj
|uj − ui|

ρj
∇2W (|ri − rj|, h) (3)

The solver works by applying a smoothing kernel to perform a weighted sum of neighboring
particle contributions to fluid dynamics such as pressure, viscosity, etc. If we omit surface
tension, (see stretch goals) and for each particle in the simulation sum over every other
particle, this naive implementation will yield a runtime of O(N2).

Design

The overall design will rely on an unoptimized, feature-sparse method of SPH to “solve”
the state of the simulation at every timestep before rendering. The desired simulation will
involve the classic “dam break” simulation in which a block of fluid is dropped into a rigid
container. In the conventional imperative approach, the state of the simulation is stored as
a vector of particles which are traversed at every iteration of the simulation to produce the
animation. In Haskell, the implementation will rely on recursing over a list of particles to
functionally transform the current state into future states of simulation. Simple rendering
side-effects will be handled likely via monads (when in doubt, monad it out?) and rely on
preexisting Haskell libraries for OpenGL bindings. In order to parallelize the solver, one
can think of splitting the particles similar to splitting the document in parallelized word-
count. This can be trivially split and subsequently parallelized. One interesting path that I
plan to investigate is various means of parallelization through dividing “work” spatially and
temporally, as you could potentially parallelize through time with some careful bookkeeping.

1GitHub for his implementation: https://github.com/cerrno/mueller-sph/blob/master/src/main.cpp
2http://matthias-mueller-fischer.ch/publications/sca03.pdf

1

Figure 1: An OpenGL-rendered 2D particle simulation3

Stretch Goals

If time allows, the following goals will be included:

1. Expand solver to include surface tension

2. Move to grid-based solver, and ignore particles outside of kernel’s radius of support
(yielding runtime complexity of O(N))

2

