Functors and Friends

Stephen A. Edwards

Columbia University

Fall 2019
Functors

Functor Laws

Applicative Functors

Pure and the <$> Operator

ZipList Applicative Functors

disfa2

sequenceA

Applicative Functor Laws

newtype

Monoids
Functors: Types That Hold a Type in a Box

class Functor f where
 fmap :: (a -> b) -> f a -> f b

f is a type constructor of kind \(\ast \to \ast \). “A box of”

\[\text{fmap } g \ x \text{ means “apply } g \text{ to every } a \text{ in the box } x \text{ to produce a box of } b's \]

data Maybe a = Just a | Nothing

instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap g (Just x) = Just (g x)

data Either a b = Left a | Right b

instance Functor (Either a) where
 fmap _ (Left x) = Left x
 fmap g (Right y) = Right (g y)

data List a = Cons a (List a) | Nil

instance Functor List where
 fmap g (Cons x xs) = Cons (g x) (fmap g xs)
 fmap _ Nil = Nil
IO as a Functor

Functor takes a type constructor of kind \(* \to *\), which is the kind of \(\text{IO}\).

```haskell
Prelude> :k IO
IO :: * -> *
```

IO does behave like a kind of box:

```haskell
query :: IO String
query = do line <- getLine  -- getLine returns a box :: IO String
       let res = line ++ "!"  -- take line out of box from getLine
       return res  -- put res in an IO box
```

The definition of Functor IO in the Prelude: (alternative syntax)

```haskell
instance Functor IO where
  fmap f action = do result <- action  -- take result from the box
                   return (f result)  -- apply f; put it a box
```
Using `fmap` with I/O Actions

```haskell
main = do line <- getLine
    let revLine = reverse line  -- Tedious but correct
    putStrLn revLine

main = do revLine <- fmap reverse getLine  -- More direct
           putStrLn revLine

Prelude> fmap (++"!") getLine
 foo
 "foo!"
```
Functions are Functors

Prelude> :k (->)
(->) :: * -> * -> * -- Like ``(+),'' (->) is a function on types

That is, the function type constructor \(\rightarrow \) takes two concrete types and produces a third (a function). This is the same kind as \(\text{Either} \)

Prelude> :k ((->) Int)
((->) Int) :: * -> *

The \(((\rightarrow) \text{Int}) \) type constructor takes type \text{a} \ and produces functions that transform Ints to \text{a}'s. \text{fmap} will apply a function that transforms the \text{a}'s to \text{b}'s.

\[
\text{instance} \quad \text{Functor} \quad ((\rightarrow) \text{a}) \quad \text{where}
\quad \text{fmap} \; f \; g = \lambda \text{x} \rightarrow f \; (g \; \text{x}) \quad -- \text{Wait, this is just function composition!}
\]

\[
\text{instance} \quad \text{Functor} \quad ((\rightarrow) \text{a}) \quad \text{where}
\quad \text{fmap} = (.) \quad -- \text{Much more succinct (Prelude definition)}
\]
Fmapping Functions: \(\text{fmap} \ f \ g = f \ . \ g \)

Prelude> :t fmap (*3) (+100)
fmap (*3) (+100) :: \text{Num} \ b \Rightarrow b \rightarrow b

Prelude> fmap (*3) (+100) 1
303

Prelude> (*3) `fmap` (+100) $ 1
303

Prelude> (*3) . (+100) $ 1
303

Prelude> fmap (show . (*3)) (+100) 1
"303"
Partially Applying \textit{fmap}

\texttt{Prelude} \texttt{> :t fmap}

\texttt{fmap} :: \texttt{Functor} \texttt{f} \Rightarrow (a \rightarrow b) \rightarrow f\ a \rightarrow f\ b

\texttt{Prelude} \texttt{> :t fmap\ (*3)}

\texttt{fmap\ (*3)} :: (\texttt{Functor}\ f, \texttt{Num}\ b) \Rightarrow f\ b \rightarrow f\ b

“\texttt{fmap\ (*3)}” is a function that operates on functors of the \texttt{Num} type class (“functors over numbers”). The function \texttt{(*3)} has been \textit{lifted} to functors

\texttt{Prelude} \texttt{> :t fmap\ (replicate\ 3)}

\texttt{fmap\ (replicate\ 3)} :: \texttt{Functor} \texttt{f} \Rightarrow f\ a \rightarrow f\ [a]

“\texttt{fmap\ (replicate\ 3)}” is a function over functors that generates “boxed lists”
Functor Laws

Applying the identity function does not change the functor (“fmap does not change the box”):

\[\text{fmap } \text{id} = \text{id} \]

Applying \text{fmap} with two functions is like applying their composition (“applying functions to the box is like applying them in the box”):

\[\text{fmap (f . g)} = \text{fmap f . fmap g} \]

\[\text{fmap } (\lambda y \rightarrow f (g y)) x = \text{fmap f (fmap g x)} \quad \text{-- Equivalent} \]
```haskell
instance Functor Maybe where
  fmap Nothing = Nothing
  fmap f (Just x) = Just (f x)

{- Does Maybe follow the laws? -}

fmap id Nothing = Nothing  -- from the definition of fmap
fmap id (Just x) = Just (id x)  -- from the definition of fmap
         = Just x  -- from the definition of id

(fmap f . fmap g) Nothing = fmap f (fmap g Nothing)  -- def of .
         = fmap f Nothing  -- def of fmap
         = Nothing  -- def of fmap
         = fmap (f . g) Nothing  -- def of fmap

(fmap f . fmap g) (Just x) = fmap f (fmap g (Just x))  -- def of .
         = fmap f (Just (g x))  -- def of fmap
         = Just (f (g x))  -- def of fmap
         = Just ((f . g) x)  -- def of .
         = fmap (f . g) (Just x)  -- def of fmap
```
data CMaybe a = CNothing | CJust Int a
 deriving Show

instance Functor CMaybe where -- Purported
 fmap _ CNothing = CNothing
 fmap f (CJust c x) = CJust (c+1) (f x)

*Main> fmap id CNothing
CNothing -- OK: fmap id Nothing = id Nothing
*Main> fmap id (CJust 42 "Hello")
CJust 43 "Hello" -- FAIL: fmap id /= id because 43 /= 42

*Main> fmap ((+1) . (+1)) (CJust 42 100)
CJust 43 102
*Main> (fmap (+1) . fmap (+1)) (CJust 42 100)
CJust 44 102 -- FAIL: fmap (f . g) /= fmap f . fmap g because 43 /= 44
Multi-Argument Functions on Functors: Applicative Functors

Functions in Haskell are Curried:

\[1 + 2 = (+) 1 2 = ((+) 1) 2 = (1+) 2 = 3 \]

What if we wanted to perform \(1+2\) in a Functor?

```haskell
class Functor f where
  fmap :: (a -> b) -> f a -> f b
```

fmap is “apply a normal function to a functor, producing a functor”

Say we want to add 1 to 2 in the \([\]\) Functor (lists):

\[
[1] + [2] = (+) [1] [2] \quad \text{-- Infix to prefix}
= (fmap (+) [1]) [2] \quad \text{-- fmap: apply function to functor}
= [(1+)] [2] \quad \text{-- Now what?}
\]

We want to apply a Functor containing functions to another functor, e.g., something with the signature \([a -> b] -> [a] -> [b]\)
Applicative Functors: Applying Functions in a Functor

```
infixl 4 <*>
class Functor f => Applicative f where
  pure :: a -> f a          -- Box something, e.g., a function
  (<*>) :: f (a -> b) -> f a -> f b -- Apply boxed function to a box

instance Applicative Maybe where
  pure = Just             -- Put it in a "Just" box
  Nothing <*> _ = Nothing -- No function to apply
  Just f <*> m = fmap f m -- Apply function-in-a-box f
```

```
Prelude> :t fmap (+) (Just 1)
fmap (+) (Just 1) :: Num a => Maybe (a -> a) -- Function-in-a-box

Prelude> fmap (+) (Just 1) <*> (Just 2)
Just 3

Prelude> fmap (+) Nothing <*> (Just 2)
Nothing -- Nothing is a buzzkiller
```
Pure and the <$> Operator

```haskell
Prelude> pure (-) <$> Just 10 <$> Just 4
Just 6
Prelude> pure (10-) <$> Just 4
Just 6
Prelude> (-) `fmap` (Just 10) <$> Just 4
Just 6
```

<$> is simply an infix `fmap` meant to remind you of the $ operator

```haskell
infixl 4 <$> 
(<$>) :: Functor f => (a -> b) -> f a -> f b
f <$> x = fmap f x  -- Or equivalently, f `fmap` x
```

So

```haskell
f <$> x <$> y <$> z  is like  f x y z  but on applicative functors x, y, z
```

```haskell
Prelude> (+) <$> [1] <$> [2]
[3]
Prelude> (,,) <$> Just "PFP" <$> Just "Rocks" <$> Just "Out"
Just ("PFP","Rocks","Out")
```
Maybe as an Applicative Functor

instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap g (Just x) = Just (g x)

infixl 4 <$>
f <$> x = fmap f x

instance Applicative Maybe where
 pure = Just
 Nothing <*> _ = Nothing
 Just f <*> m = fmap f m

f <$> Just x <*> Just y
= (f <$> Just x) <*> Just y -- a <$> b <*> c = (a <$> b) <*> c
= (fmap f (Just x)) <*> Just y -- Definition of <$>
= (Just (f x)) <*> Just y -- Definition of fmap Maybe
= fmap (f x) (Just y) -- Definition of <*>
= Just (f x y) -- Definition of fmap Maybe
Lists are Applicative Functors

```haskell
instance Applicative [] where
  pure x = [x]  -- Pure makes singleton list
  fs <$> xs = [ f x | f <- fs, x <- xs ]  -- All combinations
```

$<$ associates (evaluates) left-to-right, so the last list is iterated over first:

Prelude> [(++"!"), (++"?"), (++".")] <$> ["Run", "GHC"]
["Run!","GHC!","Run?","GHC?","Run.","GHC."]

Prelude> [x+y | x <- [100,200,300], y <- [1..3]]
[101,102,103,201,202,203,301,302,303]

Prelude> (+) <$> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]

Prelude> pure (+) <*> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]
IO is an Applicative Functor

<*> enables I/O actions to be used more like functions

\[
\text{instance Applicative } \text{IO where} \\
\text{pure} = \text{return} \\
a \langle*\rangle b = \text{do } f \leftarrow a \\
x \leftarrow b \\
\text{return } (f \ x)
\]

Specialized to IO actions,

\[
\langle*\rangle :: \text{IO } (a \rightarrow b) \\
\rightarrow \text{IO } a \\
\rightarrow \text{IO } b
\]

```haskell
main = do \\
a <- getLine \\
b <- getLine \\
putStrLn $ a ++ b

main :: IO () \\
main = do \\
a <- (++ <$> getLine <*> getLine) \\
putStrLn a

$ stack runhaskell af2.hs \\
One \\
Two \\
OneTwo
```
For the function type constructor \((\to)\ a\), the types for Applicative are

\[
\text{pure} :: b \to ((\to)\ a)\ b \\
:: b \to a \to b
\]

\[
(\ast\ast) :: ((\to)\ a)\ (b \to c) \to ((\to)\ a)\ b \to ((\to)\ a)\ c \\
:: (a \to b \to c) \to (a \to b) \to (a \to c)
\]

The definitions almost follow directly from these types:

\textbf{instance} Applicative ((\to)\ a) where

\[
\text{pure} \ x = _ \to x \quad -- \text{a.k.a., const}
\]

\[
f \ast\ast g = \x \to f\ x\ (g\ x) \quad -- \text{Takes an} \ a \ \text{and uses} \ f \ \text{&} \ g \ \text{to produce} \ a \ \text{c}
\]

```
Prelude> :t \f\ g\ x \to f\ x\ (g\ x)
\f\ g\ x \to f\ x\ (g\ x) :: (a \to b \to c) \to (a \to b) \to a \to c
```
Functions as Applicative Functors

```haskell
instance Applicative ((->) a) where f <*> g = \x -> f x (g x)
instance Functor ((->) a) where fmap = (.)
```

Prelude> :t (+) <$> (+3) <*> (*100)
 (+) <$> (+3) <*> (*100) :: Num b => b -> b -- A function on numbers
Prelude> (+) <$> (+3) <*> (*100) 5
508 -- Apply 5 to +3, apply 5 to *100, and add the results

Single-argument functions (+3), (*100) are the boxes (arguments are "put inside"), which are assembled with (+) into a single-argument function.

```haskell
( (+) <$> (+3) <*> (*100) ) 5
= ( (\x -> (+) . (+3)) ) <*> (*100) 5 -- Definition of <$> 
= \x -> (\x -> (\x -> (+) . (+3))) x (*100) x) 5 -- Definition of <*> 
= (\x -> (+) . (+3)) 5 (*100) 5)) 5 -- Apply 5 to lambda expr. 
= ((+) ((+3) 5)) (*100) 5)) 5) -- Definition of . 
= (+) 8 500 -- Evaluate (+3) 5, (*100) 5 
= 508     -- Evaluate (+) 8 500
```
Functions as Applicative Functors

Another example: (,,) is the “build a 3-tuple operator”

Prelude> :t (,,) <$> (+3) <*> (*3) <*> (*100)
(,,) <$> (+3) <*> (*3) <*> (*100) :: Num a => a -> (a, a, a)

Prelude> ((,,) <$> (+3) <*> (*3) <*> (*100)) 2
(5,6,200)

The elements of the 3-tuple:

2 + 3 = 5
2 * 3 = 6
2 * 100 = 200

Each comes from applying 2 to the three functions.

“Generate a 3-tuple by applying the argument to (+3), (*3), and (*100)”
ZipList Applicative Functors

The usual implementation of Applicative Functors on lists generates all possible combinations:

```
Prelude> [(+),(*)] <*> [1,2] <*> [10,100]
[11,101,12,102,10,100,20,200]
```

Control.Applicative provides an alternative approach with zip-like behavior:

```
newtype ZipList a = ZipList { getZipList :: [a] }
instance Applicative ZipList where
  pure x = ZipList (repeat x) -- Infinite list of x's
  ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)
```

```
> ZipList [(+),(*)] <*> ZipList [1,2] <*> ZipList [10,100]
ZipList {getZipList = [11,200]}  -- [1 + 10, 2 * 100]
ZipList {getZipList = [(1,3,5),(2,4,6)]}
```
liftA2: Lift a Two-Argument Function to an Applicative Functor

```
class Functor f => Applicative f where
  pure :: a -> f a
  ( <*> ) :: f (a -> b) -> f a -> f b
  ( <*> ) = liftA2 id       -- Default: get function from 1st arg's box

liftA2 :: (a -> b -> c) -> f a -> f b -> f c
liftA2 f x = ( <*> ) (fmap f x)       -- Default implementation
```

`liftA2` takes a binary function and “lifts” it to work on boxed values, e.g.,

```
liftA2 :: (a -> b -> c) -> (f a -> f b -> f c)
```

```
Prelude Control.Applicative> liftA2 (:) (Just 3) (Just [4])
Just [3,4]       -- Apply (:) inside the boxes, i.e., Just ((:) 3 [4])
```

```
instance Applicative ZipList where
  pure x = ZipList (repeat x)
  liftA2 f (ZipList xs) (ZipList ys) = ZipList (zipWith f xs ys)
```
Turning a list of boxes into a box containing a list

sequenceA1 :: Applicative f => [f a] -> f [a] -- Prelude sequenceA
sequenceA1 [] = pure []
sequenceA1 (x:xs) = (:) <$> x <*> sequenceA1 xs

*Main> sequenceA1 [Just 3, Just 2, Just 1]
Just [3,2,1]

Recall that \(f <$> \text{Just } x <*> \text{Just } y = \text{Just } (f \times y) \)

sequenceA1 [Just 3, Just 1]
= (:) <$> Just 3 <*> sequenceA1 [Just 1]
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> sequenceA1 [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> pure [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> Just [])
= (:) <$> Just 3 <*> Just [1]
= Just [3,1]
SequenceA Can Also Be Implemented With a Fold

```haskell
import Control.Applicative (liftA2)

sequenceA2 :: Applicative f => [f a] -> f [a] -- Prelude sequenceA
sequenceA2 = foldr (liftA2 (:)) (pure [])
```

How do the types work out?

```haskell
liftA2 :: App. f ⇒ (a → b → c) → f a → f b → f c
(+) :: a → [a] → [a]
```

Passing (:) to liftA2 makes b = [a] and c = [a], so

```haskell
liftA2 (:) :: App. f ⇒ f a → f [a] → f [a]
foldr :: (d → e → e) → e → [d] → e
```

Passing liftA2 (:) to foldr makes d = f a and e = f [a], so

```haskell
foldr (liftA2 (:)) :: App. f ⇒ f [a] → [f a] → f [a]
pure [] :: App. f ⇒ f [a]
foldr (liftA2 (:)) (pure []) :: App. f ⇒ [f a] → f [a]
```
SequenceA in Action

sequenceA :: Applicative f => [f a] -> f [a]
sequenceA = foldr (liftA2 (:)) (pure [])

“Take the items from a list of boxes to make a box with a list of items”

Prelude> sequenceA [Just 3, Just 2, Just 1]
Just [3,2,1]
Prelude> sequenceA [Just 3, Nothing, Just 1]
Nothing -- ``Nothing'' nullifies the result

Prelude> :t sequenceA [(+3), (+2), (+1)]
sequenceA [(+3), (+2), (+1)] :: Num a => a -> [a] -- Produces a list

Prelude> sequenceA [(+3), (+2), (+1)] 10
[13,12,11] -- Apply the argument to each function

Prelude> sequenceA [[1,2,3],[10,20]]
[[1,10],[1,20],[2,10],[2,20],[3,10],[3,20]] -- fmap on lists
Applicative Functor Laws

pure \(f \langle*\rangle x = \text{fmap} \ f \ x \quad -- \langle*\rangle: \text{apply a boxed function}\)

pure \(\text{id} \langle*\rangle x = x \quad -- \text{Because } \text{fmap} \ \text{id} = \text{id}\)

pure \((.) \langle*\rangle x \langle*\rangle y \langle*\rangle z = x \langle*\rangle (y \langle*\rangle z) \quad -- \langle*\rangle \text{ is left-to-right}\)

pure \(f \langle*\rangle \text{pure} \ x = \text{pure} \ (f \ x) \quad -- \text{Apply a boxed function}\)

\(x \langle*\rangle \text{pure} \ y = \text{pure} \ (\$ \ y) \langle*\rangle x \quad -- \text{\$(y): “apply arg. } y\text{”}\)
The `newtype` keyword: Build a New Type From an Existing Type

Say you want a version of an existing type only usable in certain contexts. `type` makes an alias with no restrictions. `newtype` is a more efficient version of `data` that only allows a single data constructor.

```haskell
newtype DegF = DegF { getDegF :: Double }
newtype DegC = DegC { getDegC :: Double }

fToC :: DegF -> DegC
fToC (DegF f) = DegC $ (f - 32) * 5 / 9

cToF :: DegC -> DegF
cToF (DegC c) = DegF $ (c * 9 / 5) + 32

instance Show DegF where show (DegF f) = show f ++ "F"

instance Show DegC where show (DegC c) = show c ++ "C"
```
DegF and DegC In Action

```
*Main> fToC (DegF 32)
0.0C
*Main> fToC (DegF 98.6)
37.0C
*Main> cToF (DegC 37)
98.6F
*Main> cToF 33
    * No instance for (Num DegC) arising from the literal '33'
*Main> DegC 33 + DegC 32
    * No instance for (Num DegC) arising from a use of '+'
*Main> let t1 = DegC 33
*Main|    t2 = DegC 10 in
*Main|    getDegC t1 + getDegC t2
43.0
```
Newtype vs. Data: Slightly Faster and Lazier

```haskell
newtype DegF = DegF { getDegF :: Double }
data DegF = DegF { getDegF :: Double }  -- Same syntax
```

A *newtype* may only have a single data constructor with a single field.

Compiler treats a *newtype* as the encapsulated type, so it’s slightly faster.

Pattern matching always succeeds for a *newtype*:

```haskell
Prelude> data DT = DT Bool
Prelude> newtype NT = NT Bool

Prelude> helloDT (DT _) = "hello"
Prelude> helloNT (NT _) = "hello"

Prelude> helloDT undefined
"*** Exception: Prelude.undefined"
Prelude> helloNT undefined
"hello"  -- Just a Bool in NT's clothing
```
Monoids

Type classes present a common interface to types that behave similarly

A Monoid is a type with an associative binary operator and an identity value

E.g., * and 1 on numbers, ++ and [] on lists:

Prelude> 4 * 1
4 -- 1 is the identity on the right
Prelude> 1 * 4
4 -- 1 is the identity on the left
Prelude> 2 * (3 * 4)
24
Prelude> (2 * 3) * 4
24 -- * is associative
Prelude> 2 * 3
6
Prelude> 3 * 2
6 -- * happens to be commutative

Prelude> "hello" ++ []
"hello" -- [] is the right identity
Prelude> [] ++ "hello"
"hello" -- [] is the left identity
Prelude> "a" ++ ("bc" ++ "de")
"abcde"
Prelude> ("a" ++ "bc") ++ "de"
"abcde" -- ++ is associative
Prelude> "a" ++ "b"
"ab"
Prelude> "b" ++ "a"
"ba" -- ++ is not commutative
The Monoid Type Class

class Monoid m where
 mempty :: a -- The identity value
 mappend :: m -> m -> m -- The associative binary operator

 mconcat :: [m] -> m -- Apply the binary operator to a list
 mconcat = foldr mappend mempty -- Default implementation

Lists are Monoids:

instance Monoid [a] where
 mempty = []
 mappend = (++)
*, 1 and +, 0 Can Each Make a Monoid

`newtype` lets us build distinct Monoids for each

In `Data.Monoid`,

```haskell
newtype Product a = Product { getProduct :: a }
    deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) where
    mempty = Product 1
    Product x `mappend` Product y = Product (x * y)

newtype Sum a = Sum { getSum :: a }
    deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
    mempty = Sum 0
    Sum x `mappend` Sum y = Sum (x + y)
```
Product and Sum In Action
The Any (||, False) and All (&&, True) Monoids
Ordering as a Monoid