Functors and Friends

Stephen A. Edwards

Columbia University

Fall 2019
Functors

Functor Laws

Applicative Functors

Pure and the <$> Operator

ZipList Applicative Functors

liftA2

sequenceA

Applicative Functor Laws

newtype

Monoids

Foldable
Functors: Types That Hold a Type in a Box

```haskell
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```

f is a type constructor of kind \(\star \rightarrow \star\). “A box of”

\(\text{fmap } g \ x\) means “apply \(g\) to every \(a\) in the box \(x\) to produce a box of \(b\)’s”

```haskell
data Maybe a = Just a | Nothing
instance Functor Maybe where
    fmap _ Nothing = Nothing
    fmap g (Just x) = Just (g x)
```

```haskell
data Either a b = Left a | Right b
instance Functor (Either a) where
    fmap _ (Left x) = Left x
    fmap g (Right y) = Right (g y)
```

```haskell
data List a = Cons a (List a) | Nil
instance Functor List where
    fmap g (Cons x xs) = Cons (g x) (fmap g xs)
    fmap _ Nil = Nil
```
IO as a Functor

Functor takes a type constructor of kind \(* \rightarrow * \), which is the kind of \(IO \)

Prelude> :k IO
IO :: * -> *

IO does behave like a kind of box:

```haskell
query :: IO String
query = do line <- getLine -- getLine returns a box :: IO String
         let res = line ++ "!" -- take line out of box from getLine
         return res -- put res in an IO box
```

The definition of Functor IO in the Prelude: (alternative syntax)

```haskell
instance Functor IO where
  fmap f action = do result <- action -- take result from the box
                     return (f result) -- apply f; put it a box
```
Using `fmap` with I/O Actions

```
main = do line <- getLine
        let revLine = reverse line -- Tedious but correct
        putStrLn revLine

main = do revLine <- fmap reverse getLine -- More direct
        putStrLn revLine
```

Prelude> fmap (++)"!" getLine
foo
"foo!"
Functions are Functors

Prelude> :k (->)
(->) :: * -> * -> * -- Like ``+(+),'' (->) is a function on types

That is, the function type constructor \(\rightarrow \) takes two concrete types and produces a third (a function). This is the same kind as \(\text{Either} \)

Prelude> :k ((->) Int)
((->) Int) :: * -> *

The \((\rightarrow)\) \(\text{Int}\) type constructor takes type \(a\) and produces functions that transform Ints to \(a\)'s. \text{fmap} will apply a function that transforms the \(a\)'s to \(b\)'s.

\[
\text{instance}\ \text{Functor}\ ((\rightarrow)\ a)\ \text{where}
\]
\[
\text{fmap}\ f\ g = \backslash x \rightarrow f\ (g\ x) \quad --\ \text{Wait, this is just function composition!}
\]

\[
\text{instance}\ \text{Functor}\ ((\rightarrow)\ a)\ \text{where}
\]
\[
\text{fmap} = (.) \quad --\ \text{Much more succinct (Prelude definition)}
\]
Fmapping Functions: \(f \circ g = f \cdot g \)

Prelude> :t fmap (*3) (+100)
fmap (*3) (+100) :: Num b => b -> b

Prelude> fmap (*3) (+100) 1
303

Prelude> (*3) `fmap` (+100) $ 1
303

Prelude> (*3) . (+100) $ 1
303

Prelude> fmap (show . (*3)) (+100) 1
"303"
Partially Applying \textit{fmap}

\begin{verbatim}
 Prelude> :t fmap
 fmap :: Functor f => (a -> b) -> f a -> f b

 Prelude> :t fmap (*3)
 fmap (*3) :: (Functor f, Num b) => f b -> f b

 "fmap (*3)" is a function that operates on functors of the Num type class ("functors over numbers"). The function (*3) has been \textit{lifted} to functors

 Prelude> :t fmap (replicate 3)
 fmap (replicate 3) :: Functor f => f a -> f [a]

 "fmap (replicate 3)" is a function over functors that generates "boxed lists"
\end{verbatim}
Functor Laws

Applying the identity function does not change the functor ("fmap does not change the box"):

\[
\text{fmap id} = \text{id}
\]

Applying \(\text{fmap}\) with two functions is like applying their composition ("applying functions to the box is like applying them in the box"):

\[
\text{fmap (f . g)} = \text{fmap f . fmap g}
\]

\[
\text{fmap (\(\lambda y \rightarrow f (g y)\)) x} = \text{fmap f (fmap g x)} \quad -- \text{Equivalent}
\]
data Maybe a = Just a | Nothing

instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap f (Just x) = Just (f x)

{- Does Maybe follow the laws? -}

fmap id Nothing = Nothing -- from the definition of fmap
fmap id (Just x) = Just (id x) -- from the definition of fmap
 = Just x -- from the definition of id

(fmap f . fmap g) Nothing = fmap f (fmap g Nothing) -- def of .
 = fmap f Nothing -- def of fmap
 = Nothing -- def of fmap
 = fmap (f . g) Nothing -- def of fmap

(fmap f . fmap g) (Just x) = fmap f (fmap g (Just x)) -- def of .
 = fmap f (Just (g x)) -- def of fmap
 = Just (f (g x)) -- def of fmap
 = Just ((f . g) x) -- def of .
 = fmap (f . g) (Just x) -- def of fmap
My So-Called Functor

data CMaybe a = CNothing | CJust Int a
 deriving Show

instance Functor CMaybe where -- Purported
 fmap _ CNothing = CNothing
 fmap f (CJust c x) = CJust (c+1) (f x)

*Main> fmap id CNothing
CNothing -- OK: fmap id Nothing = id Nothing

*Main> fmap id (CJust 42 "Hello")
CJust 43 "Hello" -- FAIL: fmap id /= id because 43 /= 42

*Main> fmap ((+1) . (+1)) (CJust 42 100)
CJust 43 102

*Main> (fmap (+1) . fmap (+1)) (CJust 42 100)
CJust 44 102 -- FAIL: fmap (f . g) /= fmap f . fmap g because 43 /= 44
Multi-Argument Functions on Functors: Applicative Functors

Functions in Haskell are Curried:

\[
1 + 2 = (+) \ 1 \ 2 = ((+) \ 1) \ 2 = (1+) \ 2 = 3
\]

What if we wanted to perform 1+2 in a Functor?

```haskell
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```

fmap is “apply a normal function to a functor, producing a functor”

Say we want to add 1 to 2 in the [] Functor (lists):

\[
[1] + [2] = (+) \ [1] \ [2] \quad \text{-- Infix to prefix}
\]

\[
= (fmap (+) \ [1]) \ [2] \quad \text{-- fmap: apply function to functor}
\]

\[
= [(1+)] \ [2] \quad \text{-- Now what?}
\]

We want to apply a Functor containing functions to another functor, e.g., something with the signature [a -> b] -> [a] -> [b]
Applicative Functors: Applying Functions in a Functor

```haskell
infixl 4 <*>
class Functor f => Applicative f where
  pure :: a -> f a          -- Box something, e.g., a function
  (<*>) :: f (a -> b) -> f a -> f b    -- Apply boxed function to a box

instance Applicative Maybe where
  pure = Just               -- Put it in a “Just” box
  Nothing <*> _ = Nothing   -- No function to apply
  Just f <*> m = fmap f m   -- Apply function-in-a-box f

Prelude> :t fmap (+) (Just 1)
fmap (+) (Just 1) :: Num a => Maybe (a -> a) -- Function-in-a-box

Prelude> fmap (+) (Just 1) <*> (Just 2)
Just 3
Prelude> fmap (+) Nothing <*> (Just 2)
Nothing                        -- Nothing is a buzzkiller
```
Pure and the <$> Operator

Prelude> pure (-) <$> Just 10 <$> Just 4
Just 6
Prelude> pure (10-) <$> Just 4
Just 6
Prelude> (-) `fmap` (Just 10) <$> Just 4
Just 6

 <$> is simply an infix fmap meant to remind you of the $ operator

infixl 4 <$>

($<$>) :: Functor f => (a -> b) -> f a -> f b
f <$> x = fmap f x

-- Or equivalently, f `fmap` x

So f <$> x <*> y <*> z is like f x y z but on applicative functors x, y, z

Prelude> (+) <$> [1] <$> [2]
[3]
Prelude> (,,) <$> Just "PFP" <$> Just "Rocks" <$> Just "Out"
Just ("PFP","Rocks","Out")
Maybe as an Applicative Functor

instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap g (Just x) = Just (g x)

infixl 4 <$> f <$> x = fmap f x

instance Applicative Maybe where
 pure = Just
 Nothing <*> _ = Nothing
 Just f <*> m = fmap f m

f <$> Just x <*> Just y
= (f <$> Just x) <*> Just y -- a <$> b <*> c = (a <$> b) <*> c
= (fmap f (Just x)) <*> Just y -- Definition of <$>
= (Just (f x)) <*> Just y -- Definition of fmap Maybe
= fmap (f x) (Just y) -- Definition of <*>
= Just (f x y) -- Definition of fmap Maybe
Lists are Applicative Functors

```
instance Applicative [] where
  pure x = [x] -- Pure makes singleton list
  fs <*> xs = [ f x | f <- fs, x <- xs ] -- All combinations
```

`<*>` associates (evaluates) left-to-right, so the last list is iterated over first:

```
Prelude> [ (++"!"), (++"?"), (++".") ] <*> [ "Run", "GHC" ]
["Run!","GHC!","Run?","GHC?","Run.","GHC."]

Prelude> [ x+y | x <- [100,200,300], y <- [1..3] ]
[101,102,103,201,202,203,301,302,303]

Prelude> (+) <$> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]

Prelude> pure (+) <*> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]
```
IO is an Applicative Functor

<*> enables I/O actions to be used more like functions

\[
\text{instance } \text{Applicative } \text{IO where}
\]

\[
\text{pure} = \text{return}
\]

\[
\text{a} \circ\ast\text{ b} = \text{ do } f \leftarrow a
\]

\[
x \leftarrow b
\]

\[
\text{return } (f \, x)
\]

Specialized to IO actions,

\[
(\circ\ast) : : \text{IO } (a \rightarrow b)
\]

\[
\rightarrow \text{IO } a
\]

\[
\rightarrow \text{IO } b
\]

\[
\text{main} = \text{ do }
\]

\[
a \leftarrow \text{getLine}
\]

\[
b \leftarrow \text{getLine}
\]

\[
\text{putStrLn } \$ a \; ++ \; b
\]

\[
\text{main :: IO } ()
\]

\[
\text{main = do}
\]

\[
a \leftarrow (++) \; <$> \; \text{getLine} \; <*> \; \text{getLine}
\]

\[
\text{putStrLn } a
\]

\[
\text{main} = \text{ do }
\]

\[
\text{putStrLn } a
\]

\[
\text{runhaskell af2.hs}
\]

One
Two
OneTwo
Function Application \((\rightarrow) \ a)\) as an Applicative Functor

```
pure :: b \rightarrow ((\rightarrow) \ a) \ b
    :: b \rightarrow a \rightarrow b

(<*>)) :: ((\rightarrow) \ a) \ (b \rightarrow c) \rightarrow ((\rightarrow) \ a) \ b \rightarrow ((\rightarrow) \ a) \ c
    :: (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
```

The “box” is “a function that takes an \(a\) and returns the type in the box”

\(<*>\) takes \(f :: a \rightarrow b \rightarrow c\) and \(g :: a \rightarrow b\) and should produce \(a \rightarrow c\).

Applying an argument \(x :: a\) to \(f\) and \(g\) gives \(g \ x :: b\) and \(f \ x :: b \rightarrow c\).
This means applying \(g \ x\) to \(f \ x\) gives \(c\), i.e., \(f \ x \ (g \ x) :: c\).

```
instance Applicative ((\rightarrow) \ a) where
    pure x = \_ \rightarrow x           -- a.k.a., const
    f <*> g = \x \rightarrow f \ x \ (g \ x)  -- Takes an a and uses f & g to produce a c
```

Prelude> :t \f g x \rightarrow f x \ (g \ x)
\f g x \rightarrow f x \ (g \ x) :: (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c
Functions as Applicative Functors

instance Applicative ((->) a) where f <*> g = \x -> f x (g x)
instance Functor ((->) a) where fmap = (.)
f <$> x = fmap f x

Prelude> :t (+) <$> (+3) <*> (*100)
(+) <$> (+3) <*> (*100) :: Num b => b -> b -- A function on numbers
Prelude> ((+) <$> (+3) <*> (*100)) 5
508 -- Apply 5 to +3, apply 5 to *100, and add the results

Single-argument functions (+3), (*100) are the boxes (arguments are "put inside"), which are assembled with (+) into a single-argument function.

```
( (+) <$> (+3) <*> (*100) ) 5
= ( ((+) . (+3)) <*> (*100) ) 5  -- Definition of <$> 
= ( \x -> ((+) . (+3)) x ((*100) x)) 5  -- Definition of <*> 
= ((+) . (+3)) 5 ((*100) 5))  -- Apply 5 to lambda expr. 
= ((+) ((+3) 5)) ((*100) 5))  -- Definition of . 
= (+) 8 500  -- Evaluate (+3) 5, (*100) 5 
= 508  -- Evaluate (+) 8 500
```
Functions as Applicative Functors

Another example: (,,) is the “build a 3-tuple operator”

```haskell
Prelude> :t (,,) <$> (+3) <*> (*3) <*> (*100)
(,,) <$> (+3) <*> (*3) <*> (*100) :: Num a => a -> (a, a, a)

Prelude> (,,) <$> (+3) <*> (*3) <*> (*100)) 2
(5,6,200)
```

The elements of the 3-tuple:

\[
\begin{align*}
2 + 3 &= 5 \\
2 \times 3 &= 6 \\
2 \times 100 &= 200
\end{align*}
\]

Each comes from applying 2 to the three functions.

“Generate a 3-tuple by applying the argument to (+3), (*3), and (*100)”
ZipList Applicative Functors

The usual implementation of Applicative Functors on lists generates all possible combinations:

```
Prelude> [(+),(*)] <*> [1,2] <*> [10,100]
[11,101,12,102,10,100,20,200]
```

Control.Applicative provides an alternative approach with zip-like behavior:

```
newtype ZipList a = ZipList { getZipList :: [a] }
instance Applicative ZipList where
    pure x = ZipList (repeat x)  -- Infinite list of x's
    ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)
```

```
> ZipList [(+),(*)] <*> ZipList [1,2] <*> ZipList [10,100]
ZipList {getZipList = [11,200]}  -- [1 + 10, 2 * 100]
ZipList {getZipList = [(1,3,5),(2,4,6)]}
```
liftA2: Lift a Two-Argument Function to an Applicative Functor

```haskell
class Functor f => Applicative f where

  pure :: a -> f a
  (<<*>>) :: f (a -> b) -> f a -> f b
  (<<*>>) = liftA2 id  -- Default: get function from 1st arg’s box

liftA2 :: (a -> b -> c) -> f a -> f b -> f c
liftA2 f x = (<<*>>) (fmap f x)  -- Default implementation
```

`liftA2` takes a binary function and “lifts” it to work on boxed values, e.g.,

```haskell
liftA2 :: (a -> b -> c) -> (f a -> f b -> f c)
```

Prelude Control.Applicative> liftA2 (:) (Just 3) (Just [4])
Just [3,4] -- Apply (:) inside the boxes, i.e., Just ((:) 3 [4])

```haskell
instance Applicative ZipList where

  pure x = ZipList (repeat x)
  liftA2 f (ZipList xs) (ZipList ys) = ZipList (zipWith f xs ys)
```
Turning a list of boxes into a box containing a list

sequenceA1 :: Applicative f => [f a] -> f [a] -- Prelude sequenceA
sequenceA1 [] = pure []
sequenceA1 (x:xs) = (:) <$> x <*> sequenceA1 xs

*Main> sequenceA1 [Just 3, Just 2, Just 1]
Just [3,2,1]

Recall that \(f <$> Just \ x <*> Just \ y = Just \ (f \ x \ y) \)

sequenceA1 [Just 3, Just 1]
= (:) <$> Just 3 <*> sequenceA1 [Just 1]
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> sequenceA1 [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> pure [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> Just [])
= (:) <$> Just 3 <*> Just [1]
= Just [3,1]
SequenceA Can Also Be Implemented With a Fold

```haskell
import Control.Applicative (liftA2)

sequenceA2 :: Applicative f => [f a] -> f [a] -- Prelude sequenceA
sequenceA2 = foldr (liftA2 (:)) (pure [])
```

How do the types work out?

```
liftA2 :: App. f ⇒ (a → b → c ) → f a → f b → f c
( :) :: a → [a] → [a]
```

Passing (:) to liftA2 makes b = [a] and c = [a], so

```
liftA2 (:) :: App. f ⇒ f a → f [a] → f [a]
foldr :: (d → e → e) → e → [d] → e
```

Passing liftA2 (:) to foldr makes d = f a and e = f [a], so

```
foldr (liftA2 ( :)) :: App. f ⇒ f [a] → [f a] → f [a]
pure [] :: App. f ⇒ f [a]
foldr (liftA2 ( :)) (pure []) :: App. f ⇒ [f a] → f [a]
```
SequenceA in Action

sequenceA :: Applicative f => [f a] -> f [a]
sequenceA = foldr (liftA2 (:)) (pure [])

“Take the items from a list of boxes to make a box with a list of items”

Prelude> sequenceA [Just 3, Just 2, Just 1]
Just [3,2,1]
Prelude> sequenceA [Just 3, Nothing, Just 1]
Nothing -- `Nothing" nullifies the result

Prelude> :t sequenceA [(+3), (+2), (+1)]
sequenceA [(+3), (+2), (+1)] :: Num a => a -> [a] -- Produces a list

Prelude> sequenceA [(+3), (+2), (+1)] 10
[13,12,11] -- Apply the argument to each function

Prelude> sequenceA [[1,2,3],[10,20]]
[[1,10],[1,20],[2,10],[2,20],[3,10],[3,20]] -- fmap on lists
Applicative Functor Laws

pure f <*> $x = fmap f x \quad -- \text{<*>: apply a boxed function}$

pure id <*> $x = x \quad -- \text{Because } fmap \text{ id } = \text{id}$

pure (.) <*> x <*> y <*> $z = x$ <*> (y <*> $z) \quad -- \text{<*> is left-to-right}$

pure f <*> pure $x = \text{pure (} f \text{ x)} \quad -- \text{Apply a boxed function}$

x <*> pure $y = \text{pure (} y \text{)}$ <*> $x \quad -- \text{(} y \text{)}: \text{“apply arg. } y\text{”}$
The *newtype* keyword: Build a New Type From an Existing Type

Say you want a version of an existing type only usable in certain contexts. *type* makes an alias with no restrictions. *newtype* is a more efficient version of *data* that only allows a single data constructor.

```haskell
newtype DegF = DegF { getDegF :: Double }
newtype DegC = DegC { getDegC :: Double }

fToC :: DegF -> DegC
fToC (DegF f) = DegC $(f - 32) * 5 / 9

cToF :: DegC -> DegF
cToF (DegC c) = DegF $(c * 9 / 5) + 32

instance Show DegF where show (DegF f) = show f ++ "F"

instance Show DegC where show (DegC c) = show c ++ "C"
```
DegF and DegC In Action

*Main> fToC (DegF 32)
0.0C
*Main> fToC (DegF 98.6)
37.0C
*Main> cToF (DegC 37)
98.6F
*Main> cToF 33
 * No instance for (Num DegC) arising from the literal '33'
*Main> DegC 33 + DegC 32
 * No instance for (Num DegC) arising from a use of '+'
*Main> let t1 = DegC 33
*Main| t2 = DegC 10 in
*Main| getDegC t1 + getDegC t2
43.0
Newtype vs. Data: Slightly Faster and Lazier

```haskell
newtype DegF = DegF { getDegF :: Double }
data DegF = DegF { getDegF :: Double } -- Same syntax
```

A newtype may only have a single data constructor with a single field. Compiler treats a newtype as the encapsulated type, so it's slightly faster. Pattern matching always succeeds for a newtype:

```haskell
Prelude> data DT = DT Bool
Prelude> newtype NT = NT Bool

Prelude> helloDT (DT _) = "hello"
Prelude> helloNT (NT _) = "hello"

Prelude> helloDT undefined
"*** Exception: Prelude.undefined"
Prelude> helloNT undefined
"hello" -- Just a Bool in NT's clothing
```
<table>
<thead>
<tr>
<th>Keyword</th>
<th>When to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>When you need a completely new algebraic type or record, e.g., data MyTree a = Node a (MyTree a) (MyTree a)</td>
</tr>
<tr>
<td>type</td>
<td>When you want a concise name for an existing type and aren’t trying to restrict its use, e.g., type String = [Char]</td>
</tr>
<tr>
<td>newtype</td>
<td>When you’re trying to restrict the use of an existing type and were otherwise going to write data MyType = MyType t</td>
</tr>
</tbody>
</table>
Monoids

Type classes present a common interface to types that behave similarly

A Monoid is a type with an associative binary operator and an identity value

E.g., * and 1 on numbers, ++ and [] on lists:

```
Prelude> 4 * 1
4  -- 1 is the identity on the right
Prelude> 1 * 4
4  -- 1 is the identity on the left
Prelude> 2 * (3 * 4)
24
Prelude> (2 * 3) * 4
24  -- * is associative
Prelude> 2 * 3
6
Prelude> 3 * 2
6  -- * happens to be commutative

Prelude> "hello" ++ []
"hello"  -- [] is the right identity
Prelude> [] ++ "hello"
"hello"  -- [] is the left identity
Prelude> "a" ++ ("bc" ++ "de")
"abcde"
Prelude> ("a" ++ "bc") ++ "de"
"abcde"  -- ++ is associative
Prelude> "a" ++ "b"
"ab"
Prelude> "b" ++ "a"
"ba"  -- ++ is not commutative
```
The Monoid Type Class

class Monoid m where
 mempty :: a -- The identity value
 mappend :: m -> m -> m -- The associative binary operator

 mconcat :: [m] -> m -- Apply the binary operator to a list
 mconcat = foldr mappend mempty -- Default implementation

Lists are Monoids:

instance Monoid [a] where
 mempty = []
 mappend = (++)

Prelude> mempty :: [a]
[]
Prelude> "hello " `mappend` "world!"
"hello world!"
Prelude> mconcat ["hello ","pfp ","world!"]
"hello pfp world!"
*, 1 and +, 0 Can Each Make a Monoid

`newtype` lets us build distinct Monoids for each

In Data.Monoid,

```haskell
newtype Product a = Product { getProduct :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) where
  mempty = Product 1
  Product x `mappend` Product y = Product (x * y)
```

```haskell
newtype Sum a = Sum { getSum :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
  mempty = Sum 0
  Sum x `mappend` Sum y = Sum (x + y)
```
Product and Sum In Action

Prelude Data.Monoid> mempty :: Sum Int
Sum {getSum = 0}
Prelude Data.Monoid> mempty :: Product Int
Product {getProduct = 1}

Prelude Data.Monoid> Sum 3 `mappend` Sum 4
Sum {getSum = 7}
Prelude Data.Monoid> Product 3 `mappend` Product 4
Product {getProduct = 12}

Prelude Data.Monoid> mconcat [Sum 1, Sum 10, Sum 100]
Sum {getSum = 111}
Prelude Data.Monoid> mconcat [Product 10, Product 3, Product 5]
Product {getProduct = 150}
The Any (||, False) and All (&&, True) Monoids

In Data.Monoid,

```haskell
newtype Any = Any { getAny :: Bool }
  deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid Any where
  mempty = Any False
  Any x `mappend` Any y = Any (x || y)
```

```haskell
newtype All = All { getAll :: Bool }
  deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid All where
  mempty = All True
  All x `mappend` All y = All (x && y)
```
Any and All

Prelude Data.Monoid> mempty :: Any
Any {getAny = False}
Prelude Data.Monoid> mempty :: All
All {getAll = True}

Prelude Data.Monoid> getAny $ Any True `mappend` Any False
True
Prelude Data.Monoid> getAll $ All True `mappend` All False
False

Prelude Data.Monoid> mconcat [Any True, Any False, Any True]
Any {getAny = True}
Prelude Data.Monoid> mconcat [All True, All True, All False]
All {getAll = False}

Yes, \textit{any} and \textit{all} are easier to use
Ordering as a Monoid

```haskell
data Ordering = LT | EQ | GT
```

In Data.Monoid,

```haskell
instance Monoid Ordering where
    mempty = EQ
    LT `mappend` _ = LT
    EQ `mappend` y = y
    GT `mappend` _ = GT
```

Application: an `lcomp` for strings ordered by length then alphabetically, e.g.,

```haskell
lcomp :: String -> String -> Ordering
```

<table>
<thead>
<tr>
<th>Input</th>
<th><code>lcomp</code></th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>"b"</td>
<td><code>lcomp</code> "aaaa"</td>
<td>LT -- b is shorter</td>
</tr>
<tr>
<td>"bbbbbb"</td>
<td><code>lcomp</code> "a"</td>
<td>GT -- bbbbbb is longer</td>
</tr>
<tr>
<td>"avenger"</td>
<td><code>lcomp</code> "avenged"</td>
<td>LT -- Same length: r is after d</td>
</tr>
</tbody>
</table>
lcomp :: String -> String -> Ordering
lcomp x y = case length x `compare` length y of
 LT -> LT
 GT -> GT
 EQ -> x `compare` y

A little too operational; `mappend` is exactly what we want

lcomp :: String -> String -> Ordering
lcomp x y = (length x `compare` length y) `mappend`
 (x `compare` y)
Maybe the Monoid

instance Monoid a ⇒ Monoid (Maybe a) where
 mempty = Nothing
 Nothing `mappend` m = m
 m `mappend` Nothing = m
 Just m1 `mappend` Just m2 = Just (m1 `mappend` m2)

Prelude> Nothing `mappend` Just "pfp"
Just "pfp"
Prelude> Just "fun" `mappend` Nothing
Just "fun"

Prelude> :m +Data.Monoid
Prelude Data.Monoid> Just (Sum 3) `mappend` Just (Sum 4)
Just (Sum {getSum = 7})
The Foldable Type Class

What I taught you:

```haskell
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
```

How it’s actually defined (Data.Foldable):

```haskell
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
```
class Foldable t where
{-# MINIMAL foldMap | foldr #-}
foldr, foldr' :: (a -> b -> b) -> b -> t a -> b
foldr1 :: (a -> a -> a) -> t a -> a
foldl, foldl' :: (b -> a -> b) -> b -> t a -> b
foldl1 :: (a -> a -> a) -> t a -> a
fold :: Monoid m => t m -> m
 -- with mappend
foldMap :: Monoid m => (a -> m) -> t a -> m
toList :: t a -> [a]
null :: t a -> Bool
length :: t a -> Int
elem :: Eq a => a -> t a -> Bool
maximum :: Ord a => t a -> a
minimum :: Ord a => t a -> a
sum :: Num a => t a -> a
product :: Num a => t a -> a

Instance of Foldable for [] is just the usual list functions
data Tree a = Node a (Tree a) (Tree a) | Nil deriving (Eq, Read)

instance Foldable Tree where
 foldMap _ Nil = mempty
 foldMap f (Node x l r) = foldMap f l `mappend` f x `mappend` foldMap f r

> foldl (+) 0 (fromList [5,3,1,2,4,6,7] :: Tree Int)
28 -- folding the tree
> getSum $ foldMap Sum $ fromList [5,3,1,2,4,6,7]
28 -- The Sum Monoid's mappend is +
> getAny $ foldMap (\x -> Any $ x == 'w') $ fromList "brown"
True -- Any's mappend is ||
> getAny $ foldMap (Any . (=='w')) $ fromList "brown"
True -- More concise
> foldMap (\x -> [x]) $ fromList [5,3,1,2,4,6,7]
[1,2,3,4,5,6,7] -- List's mappend is ++