Functors
 Functor Laws

Applicative Functors
 Pure and the <$> Operator
 ZipList Applicative Functors
 liftA2
 sequenceA
 Applicative Functor Laws

newtype

Monoids

Foldable
Functors: Types That Hold a Type in a Box

```haskell
class Functor f where
    fmap :: (a -> b) -> f a -> f b

f is a type constructor of kind * -> *. “A box of”

fmap g x means “apply g to every a in the box x to produce a box of b’s”

data Maybe a = Just a | Nothing
instance Functor Maybe where
    fmap _ Nothing = Nothing
    fmap g (Just x) = Just (g x)

data Either a b = Left a | Right b
instance Functor (Either a) where
    fmap _ (Left x) = Left x
    fmap g (Right y) = Right (g y)

data List a = Cons a (List a) | Nil
instance Functor List where
    fmap g (Cons x xs) = Cons (g x) (fmap g xs)
    fmap _ Nil = Nil
```
IO as a Functor

Functor takes a type constructor of kind \(* \rightarrow * \), which is the kind of \(IO \)

```haskell
Prelude> :k IO
IO :: * -> *
```

IO does behave like a kind of box:

```haskell
query :: IO String
query = do line <- getLine    -- getLine returns a box :: IO String
          let res = line ++ "!"    -- take line out of box from getLine
          return res              -- put res in an IO box
```

The definition of Functor IO in the Prelude: (alternative syntax)

```haskell
instance Functor IO where
    fmap f action = do result <- action    -- take result from the box
                       return (f result)    -- apply f; put it a box
```
Using `fmap` with I/O Actions

```haskell
main = do line <- getLine
    let revLine = reverse line  -- Tedious but correct
    putStrLn revLine

main = do revLine <- fmap reverse getLine  -- More direct
          putStrLn revLine

Prelude> fmap (++"!") getLine
foo
"foo!"
```
Functions are Functors

Prelude> :k (\rightarrow)
(\rightarrow) :: \ast \rightarrow \ast \rightarrow \ast -- Like ``(+),''' (\rightarrow) is a function on types

That is, the function type constructor \(\rightarrow\) takes two concrete types and produces a third (a function). This is the same kind as Either

Prelude> :k ((\rightarrow) \text{Int})
((\rightarrow) \text{Int}) :: \ast \rightarrow \ast

The \((\rightarrow) \text{Int})\) type constructor takes type \(a\) and produces functions that transform Ints to \(a\)'s. fmap will apply a function that transforms the \(a\)'s to \(b\)'s.

\begin{verbatim}
instance Functor ((\rightarrow) \text{a}) where
 fmap f g = \x \rightarrow f (g \ x) -- Wait, this is just function composition!
\end{verbatim}

\begin{verbatim}
instance Functor ((\rightarrow) \text{a}) where
 fmap = (.) -- Much more succinct (Prelude definition)
\end{verbatim}
Fmapping Functions: fmap f g = f . g

Prelude> :t fmap (*3) (+100)
fmap (*3) (+100) :: Num b => b -> b

Prelude> fmap (*3) (+100) 1
303

Prelude> (*3) `fmap` (+100) $ 1
303

Prelude> (*3) . (+100) $ 1
303

Prelude> fmap (show . (*3)) (+100) 1
"303"
Partially Applying \textit{fmap}

\begin{verbatim}
Prelude> :t fmap
fmap :: Functor f => (a -> b) -> f a -> f b

Prelude> :t fmap (*3)
fmap (*3) :: (Functor f, Num b) => f b -> f b

"fmap (*3)" is a function that operates on functors of the Num type class ("functors over numbers"). The function (*3) has been \textit{lifted} to functors

Prelude> :t fmap (replicate 3)
fmap (replicate 3) :: Functor f => f a -> f [a]

"fmap (replicate 3)" is a function over functors that generates "boxed lists"
Functor Laws

Applying the identity function does not change the functor ("fmap does not change the box"):

\[\text{fmap } \text{id} = \text{id} \]

Applying \(\text{fmap} \) with two functions is like applying their composition ("applying functions to the box is like applying them in the box"):

\[\text{fmap } (f \cdot g) = \text{fmap } f \cdot \text{fmap } g \]

\[\text{fmap } (\lambda y \rightarrow f \ (g \ y)) \ x = \text{fmap } f \ (\text{fmap } g \ x) \quad \text{-- Equivalent} \]
data Maybe a = Just a | Nothing

instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap f (Just x) = Just (f x)

{– Does Maybe follow the laws? –}
data CMaybe a = CNothing | CJust Int a

deriving Show

instance Functor CMaybe where -- Purported
fmap _ CNothing = CNothing
fmap f (CJust c x) = CJust (c+1) (f x)

*Main> fmap id CNothing
CNothing -- OK: fmap id Nothing = id Nothing
*Main> fmap id (CJust 42 "Hello")
CJust 43 "Hello" -- FAIL: fmap id /= id because 43 /= 42

*Main> fmap ((+1) . (+1)) (CJust 42 100)
CJust 43 102

*Main> (fmap (+1) . fmap (+1)) (CJust 42 100)
CJust 44 102 -- FAIL: fmap (f . g) /= fmap f . fmap g because 43 /= 44
Functions in Haskell are Curried:

\[
1 + 2 = (+) 1 2 = ((+) 1) 2 = (1+) 2 = 3
\]

What if we wanted to perform 1+2 in a Functor?

```haskell
class Functor f where
  fmap :: (a -> b) -> f a -> f b
```

fmap is “apply a normal function to a functor, producing a functor”

Say we want to add 1 to 2 in the [] Functor (lists):

```
[1] + [2] = (+) [1] [2]  
  = (fmap (+) [1]) [2]  
  = [(1+)] [2]  
```

--- Infix to prefix

--- fmap: apply function to functor

--- Now what?

We want to apply a Functor containing functions to another functor, e.g., something with the signature `[a -> b] -> [a] -> [b]`
Applicative Functors: Applying Functions in a Functor

```haskell
infixl 4 <*>
class Functor f => Applicative f where
  pure :: a -> f a  -- Box something, e.g., a function
  (<*>) :: f (a -> b) -> f a -> f b  -- Apply boxed function to a box

instance Applicative Maybe where
  pure = Just  -- Put it in a “Just” box
  Nothing <*> _ = Nothing  -- No function to apply
  Just f <*> m = fmap f m  -- Apply function-in-a-box f

Prelude> :t fmap (+) (Just 1)
fmap (+) (Just 1) :: Num a => Maybe (a -> a)  -- Function-in-a-box

Prelude> fmap (+) (Just 1) <*> (Just 2)
Just 3
Prelude> fmap (+) Nothing <*> (Just 2)
Nothing  -- Nothing is a buzzkiller
```
Pure and the <$> Operator

```
Prelude> pure (-) <$> Just 10 <$> Just 4
Just 6
Prelude> pure (10-) <$> Just 4
Just 6
Prelude> (\_ \_map\_ (Just 10) <$> Just 4
Just 6
```

 <$> is simply an infix fmap meant to remind you of the $ operator

```
ipfixl 4 <$> ($> 1 x) :: Functor f => (a -> b) -> f a -> f b
f <$> x = fmap f x    -- Or equivalently, f `fmap` x
```

So \(f <$> x <*> y <*> z \) is like \(f x y z \) but on applicative functors \(x, y, z \)

```
Prelude> (+) <$> [1] <$> [2] [3]
Prelude> (,,) <$> Just "PFP" <*> Just "Rocks" <*> Just "Out"
Just ("PFP","Rocks","Out")
```
Maybe as an Applicative Functor

\[
\text{instance Functor Maybe where}
\begin{align*}
\text{fmap } _ _ \text{ Nothing} &= \text{Nothing} \\
\text{fmap } g \ (\text{Just } x) &= \text{Just } (g \ x)
\end{align*}
\]

\text{infixl 4 }<>\text{ }
\begin{align*}
f \ (<>) \ x &= \text{fmap } f \ x
\end{align*}

\[
\text{infixl 4 }<*>
\begin{align*}
\text{pure } &= \text{Just } \\
\text{Nothing } <*_ &= \text{Nothing } \\
\text{Just } f \ (*_ m &= \text{fmap } f \ m
\end{align*}
\]

\[
\begin{align*}
f \ (<>) \ \text{Just } x \ (<*>) \ \text{Just } y &= (f \ (<>) \ \text{Just } x \ (<*>) \ \text{Just } y \quad -- a \ (<>) \ b \ (<*>) c = (a \ (<>) \ b) \ (<*>) c \\
&= (\text{fmap } f \ (\text{Just } x)) \ (<*>) \ \text{Just } y \quad -- \text{Definition of } (<>) \\
&= (\text{Just } (f \ x)) \ (<*>) \ \text{Just } y \quad -- \text{Definition of fmap Maybe} \\
&= \text{fmap } (f \ x) \ (\text{Just } y) \quad -- \text{Definition of } (<*>) \\
&= \text{Just } (f \ x \ y) \quad -- \text{Definition of fmap Maybe}
\end{align*}
\]
Lists are Applicative Functors

\begin{verbatim}
instance Applicative [] where
 pure x = [x] -- Pure makes singleton list
 fs <*> xs = [f x | f <- fs, x <- xs] -- All combinations

<*> associates (evaluates) left-to-right, so the last list is iterated over first:

Prelude> [(++)"!"), (++)"?"), (++)".")] <*> ["Run", "GHC"]
["Run!","GHC!","Run?","GHC?","Run.","GHC."]

Prelude> [x+y | x <- [100,200,300], y <- [1..3]]
[101,102,103,201,202,203,301,302,303]

Prelude> (+) <$> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]

Prelude> pure (+) <$> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]
\end{verbatim}
IO is an Applicative Functor

<*> enables I/O actions to be used more like functions

```haskell
instance Applicative IO where
  pure = return
  a <*> b = do f <- a
              x <- b
              return (f x)
```

Specialized to IO actions,

<*> :: IO (a -> b)

-> IO a

-> IO b

main = do
 a <- getLine
 b <- getLine
 putStrLn $ a ++ b

main :: IO ()

main = do
 a <- (++ <$> getLine <*> getLine)
 putStrLn a

$ stack runhaskell af2.hs
One
Two
OneTwo
Function Application as an Applicative Functor

For the function type constructor \((\rightarrow) \ a\), the types for Applicative are

\[
pure :: b \rightarrow ((\rightarrow) \ a) \ b
\]

\[
\quad :: b \rightarrow a \rightarrow b
\]

\[
(<\star>) :: ((\rightarrow) \ a) \ (b \rightarrow c) \rightarrow ((\rightarrow) \ a) \ b \rightarrow ((\rightarrow) \ a) \ c
\]

\[
\quad :: (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
\]

The definitions almost follow directly from these types:

\[
\textbf{instance} \ \textbf{Applicative} \ ((\rightarrow) \ a) \ \textbf{where}
\]

\[
\quad \text{pure} \ x = _ \rightarrow x \quad \text{-- a.k.a., const}
\]

\[
\quad f <\star> g = \x \rightarrow f \ x \ (g \ x) \quad \text{-- Takes an a and uses f & g to produce a c}
\]

\[
\textbf{Prelude}\textgreater{} :t \ f \ g \ x \rightarrow f \ x \ (g \ x)
\]

\[
\f \ g \ x \rightarrow f \ x \ (g \ x) :: (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c
\]
Functions as Applicative Functors

\[
\text{instance Applicative } ((\rightarrow)) \ a \ \text{where} \ f \ \langle\ast\rangle \ g = \lambda x \rightarrow f \ x \ (g \ x) \\
\text{instance Functor } ((\rightarrow)) \ a \ \text{where} \ \text{fmap} = (.) \\
f \ <\$> \ x = \text{fmap} \ f \ x
\]

Prelude> :t (+) <$> (+3) <*> (*100)
(+) <$> (+3) <*> (*100) :: \text{Num} \ b \Rightarrow b \rightarrow b \ -- \ A \ function \ on \ numbers
Prelude> ((+) <$> (+3) <*> (*100)) 5
508 \ -- \ Apply \ 5 \ to \ +3, \ apply \ 5 \ to \ *100, \ and \ add \ the \ results

Single-argument functions (+3), (*100) are the boxes (arguments are “put inside”), which are assembled with (+) into a single-argument function.

\[
((+) <$> (+3) <*> (*100)) 5 \\
= (((+) . (+3)) <*> (*100)) 5 -- \text{Definition of <$>}
= (\lambda x \rightarrow ((+) . (+3)) \ x \ ((*100) \ x)) 5 -- \text{Definition of <*>}
= ((+) . (+3)) 5 ((*100) 5)) -- \text{Apply 5 to lambda expr.}
= ((+) ((+3) 5)) ((*100) 5)) -- \text{Definition of .}
= (+) 8 500 -- \text{Evaluate (+3) 5, (*100) 5}
= 508 -- \text{Evaluate (+) 8 500}
\]
Functions as Applicative Functors

Another example: (,,) is the “build a 3-tuple operator”

```
Prelude> :t (,,) <$> (+3) <*> (*3) <*> (*100)
(,,) <$> (+3) <*> (*3) <*> (*100) :: Num a => a -> (a, a, a)

Prelude> ((,,) <$> (+3) <*> (*3) <*> (*100)) 2
(5,6,200)
```

The elements of the 3-tuple:

- $2 + 3 = 5$
- $2 \times 3 = 6$
- $2 \times 100 = 200$

Each comes from applying 2 to the three functions.

“Generate a 3-tuple by applying the argument to (+3), (*3), and (*100)”
ZipList Applicative Functors

The usual implementation of Applicative Functors on lists generates all possible combinations:

```
Prelude> [(+),(*)] <*> [1,2] <*> [10,100]
[11,101,12,102,10,100,20,200]
```

Control.Applicative provides an alternative approach with zip-like behavior:

```
newtype ZipList a = ZipList { getZipList :: [a] }
instance Applicative ZipList where
    pure x = ZipList (repeat x)  -- Infinite list of x's
    ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)
```

```
> ZipList [(+),(*)] <*> ZipList [1,2] <*> ZipList [10,100]
ZipList {getZipList = [11,200]}  -- [1 + 10, 2 * 100]
ZipList {getZipList = [(1,3,5),(2,4,6)]}
```
liftA2: Lift a Two-Argument Function to an Applicative Functor

```haskell
class Functor f => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
  (<*>) = liftA2 id -- Default: get function from 1st arg’s box

liftA2 :: (a -> b -> c) -> f a -> f b -> f c
liftA2 f x = (<*>) (fmap f x) -- Default implementation

Prelude Control.Applicative> liftA2 (:) (Just 3) (Just [4])
Just [3,4] -- Apply (:) inside the boxes, i.e., Just (:) 3 [4]

instance Applicative ZipList where
  pure x = ZipList (repeat x)
  liftA2 f (ZipList xs) (ZipList ys) = ZipList (zipWith f xs ys)
```
Turning a list of boxes into a box containing a list

```haskell
sequenceA1 :: Applicative f => [f a] -> f [a] -- Prelude sequenceA
sequenceA1 [] = pure []
sequenceA1 (x:xs) = (:) <$> x <*> sequenceA1 xs
```

```haskell
*Main> sequenceA1 [Just 3, Just 2, Just 1]
Just [3,2,1]
```

Recall that $f <$> Just x <*> Just y = Just (f x y)$

```haskell
```
SequenceA Can Also Be Implemented With a Fold

```haskell
import Control.Applicative (liftA2)

sequenceA2 :: Applicative f => [f a] -> f [a]  -- Prelude sequenceA
sequenceA2 = foldr (liftA2 (:)) (pure [])
```

How do the types work out?

```
liftA2 :: App. f ⇒ (a → b → c) → f a → f b → f c
(,:) :: a → [a] → [a]
```

Passing (:) to liftA2 makes b = [a] and c = [a], so

```
liftA2 (:) :: App. f ⇒ f a → f [a] → f [a]
foldr :: (d → e → e) → e → [d] → e
```

Passing liftA2 (:) to foldr makes d = f a and e = f [a], so

```
foldr (liftA2 (:) :: App. f ⇒ f [a] → [f a] → f [a]) (pure []) :: App. f ⇒ [f a] → f [a]
```
SequenceA in Action

sequenceA :: Applicative f => [f a] -> f [a]
sequenceA = foldr (liftA2 (:)) (pure [])

"Take the items from a list of boxes to make a box with a list of items"

Prelude> sequenceA [Just 3, Just 2, Just 1]
Just [3,2,1]
Prelude> sequenceA [Just 3, Nothing, Just 1]
Nothing -- "Nothing" nullifies the result

Prelude> :t sequenceA [(+3), (+2), (+1)]
sequenceA [(+3), (+2), (+1)] :: Num a => a -> [a] -- Produces a list
Prelude> sequenceA [(+3), (+2), (+1)] 10
[13,12,11] -- Apply the argument to each function

Prelude> sequenceA [[1,2,3],[10,20]]
[[1,10],[1,20],[2,10],[2,20],[3,10],[3,20]] -- fmap on lists
Applicative Functor Laws

pure f $\langle\ast\rangle$ $x = \text{fmap } f x$ -- $\langle\ast\rangle$: apply a boxed function

pure id $\langle\ast\rangle$ $x = x$ -- Because $\text{fmap } \text{id} = \text{id}$

pure $(.)$ $\langle\ast\rangle$ x $\langle\ast\rangle$ y $\langle\ast\rangle$ $z = x$ $\langle\ast\rangle$ $(y$ $\langle\ast\rangle$ $z)$ -- $\langle\ast\rangle$ is left-to-right

pure f $\langle\ast\rangle$ pure $x = $ pure $(f x)$ -- Apply a boxed function

x $\langle\ast\rangle$ pure $y = $ pure $(\$ y)$ $\langle\ast\rangle$ x -- $(\$ y): “apply arg. y”$
The *newtype* keyword: Build a New Type From an Existing Type

Say you want a version of an existing type only usable in certain contexts. *type* makes an alias with no restrictions. *newtype* is a more efficient version of *data* that only allows a single data constructor.

```haskell
newtype DegF = DegF { getDegF :: Double }
newtype DegC = DegC { getDegC :: Double }

fToC :: DegF -> DegC
fToC (DegF f) = DegC $ (f - 32) * 5 / 9

cToF :: DegC -> DegF
cToF (DegC c) = DegF $ (c * 9 / 5) + 32

instance Show DegF where show (DegF f) = show f ++ "F"

instance Show DegC where show (DegC c) = show c ++ "C"
```
DegF and DegC In Action

*Main> fToC (DegF 32)
0.0C
*Main> fToC (DegF 98.6)
37.0C
*Main> cToF (DegC 37)
98.6F
*Main> cToF 33
 * No instance for (Num DegC) arising from the literal '33'
*Main> DegC 33 + DegC 32
 * No instance for (Num DegC) arising from a use of '+'
*Main> let t1 = DegC 33
*Main| t2 = DegC 10 in
*Main| getDegC t1 + getDegC t2
43.0
Newtype vs. Data: Slightly Faster and Lazier

```haskell
newtype DegF = DegF { getDegF :: Double }
data DegF = DegF { getDegF :: Double }  -- Same syntax
```

A `newtype` may only have a single data constructor with a single field.

Compiler treats a `newtype` as the encapsulated type, so it’s slightly faster.

Pattern matching always succeeds for a `newtype`:

```haskell
Prelude> data DT = DT Bool
Prelude> newtype NT = NT Bool

Prelude> helloDT (DT _) = "hello"
Prelude> helloNT (NT _) = "hello"

Prelude> helloDT undefined
"*** Exception: Prelude.undefined"
Prelude> helloNT undefined
"hello"  -- Just a Bool in NT's clothing
```
Data vs. Type vs. NewType

<table>
<thead>
<tr>
<th>Keyword</th>
<th>When to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>When you need a completely new algebraic type or record, e.g.,</td>
</tr>
<tr>
<td></td>
<td>data MyTree a = Node a (MyTree a) (MyTree a)</td>
</tr>
<tr>
<td>type</td>
<td>When you want a concise name for an existing type and aren’t</td>
</tr>
<tr>
<td></td>
<td>trying to restrict its use, e.g., type String = [Char]</td>
</tr>
<tr>
<td>newtype</td>
<td>When you’re trying to restrict the use of an existing type and were</td>
</tr>
<tr>
<td></td>
<td>otherwise going to write data MyType = MyType t</td>
</tr>
</tbody>
</table>
Monoids

Type classes present a common interface to types that behave similarly

A Monoid is a type with an associative binary operator and an identity value

E.g., * and 1 on numbers, ++ and [] on lists:

```haskell
Prelude> 4 * 1
4  -- 1 is the identity on the right

Prelude> 1 * 4
4  -- 1 is the identity on the left

Prelude> 2 * (3 * 4)
24

Prelude> (2 * 3) * 4
24  -- * is associative

Prelude> 2 * 3
6

Prelude> 3 * 2
6  -- * happens to be commutative

Prelude> "hello" ++ []
"hello"  -- [] is the right identity

Prelude> [] ++ "hello"
"hello"  -- [] is the left identity

Prelude> "a" ++ ("bc" ++ "de")
"abcde"

Prelude> ("a" ++ "bc") ++ "de"
"abcde"  -- ++ is associative

Prelude> "a" ++ "b"
"ab"

Prelude> "b" ++ "a"
"ba"  -- ++ is not commutative
```
The Monoid Type Class

```haskell
class Monoid m where
  mempty :: a                          -- The identity value
  mappend :: m -> m -> m               -- The associative binary operator

  mconcat :: [m] -> m                  -- Apply the binary operator to a list
  mconcat = foldr mappend mempty       -- Default implementation

Lists are Monoids:

instance Monoid [a] where
  mempty    = []
  mappend   = (++)
```

Prelude> mempty :: [a]
[]
Prelude> "hello " `mappend` "world!"
"hello world!"
Prelude> mconcat ["hello ","pfp ","world!"]
"hello pfp world!"
*, 1 and +, 0 Can Each Make a Monoid

`newtype` lets us build distinct Monoids for each

In Data.Monoid,

```haskell
newtype Product a = Product { getProduct :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) where
  mempty = Product 1
  Product x `mappend` Product y = Product (x * y)
```

```haskell
newtype Sum a = Sum { getSum :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
  mempty = Sum 0
  Sum x `mappend` Sum y = Sum (x + y)
```
Product and Sum In Action

Prelude Data.Monoid> mempty :: Sum Int
Sum {getSum = 0}
Prelude Data.Monoid> mempty :: Product Int
Product {getProduct = 1}

Prelude Data.Monoid> Sum 3 `mappend` Sum 4
Sum {getSum = 7}
Prelude Data.Monoid> Product 3 `mappend` Product 4
Product {getProduct = 12}

Prelude Data.Monoid> mconcat [Sum 1, Sum 10, Sum 100]
Sum {getSum = 111}
Prelude Data.Monoid> mconcat [Product 10, Product 3, Product 5]
Product {getProduct = 150}
The Any (||, False) and All (&&, True) Monoids

In Data.Monoid,

```haskell
newtype Any = Any { getAny :: Bool }
    deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid Any where
    mempty = Any False
    Any x `mappend` Any y = Any (x || y)
```

```haskell
newtype All = All { getAll :: Bool }
    deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid All where
    mempty = All True
    All x `mappend` All y = All (x && y)
```
Any and All

Prelude Data.Monoid> mempty :: Any
Any {getAny = False}
Prelude Data.Monoid> mempty :: All
All {getAll = True}

Prelude Data.Monoid> getAny $ Any True `mappend` Any False
True
Prelude Data.Monoid> getAll $ All True `mappend` All False
False

Prelude Data.Monoid> mconcat [Any True, Any False, Any True]
Any {getAny = True}
Prelude Data.Monoid> mconcat [All True, All True, All False]
All {getAll = False}

Yes, *any* and *all* are easier to use
Ordering as a Monoid

```haskell
data Ordering = LT | EQ | GT
```

In Data.Monoid,

```haskell
instance Monoid Ordering where
  mempty = EQ
  LT `mappend` _ = LT
  EQ `mappend` y = y
  GT `mappend` _ = GT
```

Application: an `lcomp` for strings ordered by length then alphabetically, e.g.,

```haskell
lcomp :: String -> String -> Ordering

"b"    \ lcomp \ "aaaa" = LT  -- b is shorter
"bbbb" \ lcomp \ "a" = GT    -- bbbbb is longer
"avenger" \ lcomp \ "avenged" = LT  -- Same length: r is after d
```
`lcomp`:

```haskell
lcomp :: String -> String -> Ordering
lcomp x y = case length x `compare` length y of
  LT -> LT
  GT -> GT
  EQ -> x `compare` y
```

A little too operational; `mappend` is exactly what we want.

```haskell
lcomp :: String -> String -> Ordering
lcomp x y = (length x `compare` length y) `mappend`
  (x `compare` y)
```
Maybe the Monoid

```haskell
instance Monoid a => Monoid (Maybe a) where
  mempty = Nothing
  Nothing `mappend` m = m
  m `mappend` Nothing = m
  Just m1 `mappend` Just m2 = Just (m1 `mappend` m2)
```

Prelude> Nothing `mappend` Just "pfp"
Just "pfp"
Prelude> Just "fun" `mappend` Nothing
Just "fun"

Prelude> :m +Data.Monoid
Prelude Data.Monoid> Just (Sum 3) `mappend` Just (Sum 4)
Just (Sum {getSum = 7})
The Foldable Type Class

What I taught you:

```haskell
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
```

How it’s actually defined (Data.Foldable):

```haskell
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
```
class Foldable t where
{−# MINIMAL foldMap | foldr #−}
foldr, foldr' :: (a -> b -> b) -> b -> t a -> b
foldr1 :: (a -> a -> a) -> t a -> a
foldl, foldl' :: (b -> a -> b) -> b -> t a -> b
foldl1 :: (a -> a -> a) -> t a -> a
fold :: Monoid m => t m -> m -- with mappend
foldMap :: Monoid m => (a -> m) -> t a -> m
toList :: t a -> [a]
null :: t a -> Bool
length :: t a -> Int
elem :: Eq a => a -> t a -> Bool
maximum :: Ord a => t a -> a
minimum :: Ord a => t a -> a
sum :: Num a => t a -> a
product :: Num a => t a -> a

Instance of Foldable for [] is just the usual list functions
data Tree a = Node a (Tree a) (Tree a) | Nil deriving (Eq, Read)

instance Foldable Tree where
 foldMap _ Nil = mempty
 foldMap f (Node x l r) = foldMap f l `mappend` f x `mappend` foldMap f r

> foldl (+) 0 (fromList [5,3,1,2,4,6,7] :: Tree Int)
28 -- folding the tree
> getSum $ foldMap Sum $ fromList [5,3,1,2,4,6,7]
28 -- The Sum Monoid's mappend is +
> getAny $ foldMap (\x -> Any $ x == 'w') $ fromList "brown"
True -- Any's mappend is ||
> getAny $ foldMap (Any . (=='w')) $ fromList "brown"
True -- More concise
> foldMap (\x -> [x]) $ fromList [5,3,1,2,4,6,7]
[1,2,3,4,5,6,7] -- List's mappend is ++