
FPGA-based Convolutional Neural
Network Accelerator

Ke Xu
Xingyu Hou
Manqi Yang
Wenqi Jiang



Outline

• Background
• Software Implementation

• Python / C implementation of VGG-16
• Profiling and acceleration strategy
• Dynamic fixed point conversion / operation

• Hardware Implementation
• SDRAM and DMA
• Dataflow design
• PE implementation

• Conclusion



Background

• Convolutional Neural Networks (CNN)
• Computer Vision

- Image Classification, Object Detection, Semantic Segmentation
• Mainly composed of convolutions and matrix multiplications
• Both these computations are highly parallelizable

• Dedicated Hardware
• CPU: latency oriented; not good at massively parallel computations
• FPGA: by using many Processing Elements (PE), FPGA can compute

many output elements in parallel



VGG16



Software Simulation

• For reference, download a Keras-based VGG16 implementation
and weights of the model

• Reproduce the VGG16 model using Python, including convolution
layers, fully-connected layers, pooling layers and activation
functions

• Compare the result with the Keras model to verify the correctness

• Port the python implementation to C for later use



Software Simulation

Part of our python and C implementations



Algorithm Optimization - Winograd

• Winograd
• Memory consuming (need extra space to store intermediate results)
• Reduce 1/3 multiplications when using our dataflow pattern, while

consumes about 2x of memory usage

Figure above shows the Winograd process:
• Directly convolution: 4 * 3 * 3 = 36 multiplications
• Winograd convolution: 4 * 4 = 16 multiplications
• 2.25x speed up



Software Profiling

• Implement the software profiling in C to see which parts should we
accelerate on FPGA

• Neglect max pooling, ReLU and softmax function, since the time they
consume is negligible

• Time consumed comparison between convolution layer and fully-
connected layer using i5-8259U (without loading weights and data)

Convolution Layers Fully-connected Layers
Time Consumed / sec 92.02 4.15
Time Percentage / % 95.67 4.32



Software Profiling

• Time complexity analysis
• Convolutional layer:

O(conv_height * conv_width * conv_channel * conv_number * 
input_width * input_height)

e.g. 3 x 3 x 256 x 512 x 28 x 28 = 924,844,032
• Fully-connected layer:

O(fc_height * fc_width)
e.g. 4,096 x 4,096 = 16,777,216

• Convolutional layer > fully-connected layer



Software Profiling

• Memory consuming analysis
• Convolutional layer:

O(conv_height * conv_width * conv_channel * conv_number)
e.g. 3 x 3 x 256 x 512 = 1,179,648

• Fully-connected layer:
O(fc_height * fc_width)
e.g. 4,096 x 4,096 = 16,777,216

• Convolutional layer < fully-connected layer



Software Profiling

• Computation intensive VS memory access intensive

• Accelerator strategy
• Compute convolutional layers on FPGA
• Compute fully-connected layers using CPU
• If we compute both these layers on FPGA

• allocate some FPGA resources, e.g. DSPs, to fully-connected layers, which
will slow down convolutions

• copy weights (>200M bytes) from DRAM to SDRAM, which is time-
consuming (>30s)

Convolution Layers Fully-connected Layers Ratio (conv / fc)
Weights number 14,710,464 123,633,664 0.12x

Multiplications number 16,271,474,688 123,633,664 131.61x



Fixed Point Computation

• FPGA is good at fixed point
operations, so we use fixed
point instead of floating point
to do convolutions

• Challenge:
• Weights, input image and

intermediate results have
different ranges

• Can not use a unified decimal
point place, e.g. in the middle
of a fixed point:1100.0011



Fixed Point Computation

• Solution: dynamic fixed point
• 1100.0011 VS 10.101100
• length allocate to integer and decimal part differs from layer to layer
• use 1000 samples to measure the intermediate output ranges of each layer
• can be decided before runtime



Fixed Point Computation

• Conversion
• Convert images and weights to dynamic fixed point numbers
• Save these numbers and feed them into our C program

• Simulation
• Dynamic fixed point operations

• Inputs and outputs can have different decimal point place
• e.g. 0011.1010 x 011.00000 = 01010.111 (3.625 x 3 = 10.875)

• Simulate fixed point operations on hardware
• Helpful when debugging hardware functions



Fixed Point Computation

• Build tools for fixed point conversions
and verification

• Some of the functions we build
• Conversion

float2fixed, fixed2float
• Dynamic fixed point operations

fixed_add, fixed_mul, fixed_shift,
inverse, ReLU, etc.

• Other functions
digit_of // how many digits should
we assign to integer and decimal
parts



Software Summary



Hardware System Structure



Data Alignment in SDRAM



Dataflow Design



Q & A


