FPGA-based Convolutional Neural Network Accelerator

Ke Xu

Xingyu Hou

Manqi Yang

Wenqi Jiang

Outline

- Background
- Software Implementation
 - Python / C implementation of VGG-16
 - Profiling and acceleration strategy
 - Dynamic fixed point conversion / operation
- Hardware Implementation
 - SDRAM and DMA
 - Dataflow design
 - PE implementation
- Conclusion

- Convolutional Neural Networks (CNN)
 - Computer Vision
 - Image Classification, Object Detection, Semantic Segmentation
 - Mainly composed of convolutions and matrix multiplications
 - Both these computations are highly parallelizable
- Dedicated Hardware
 - CPU: latency oriented; not good at massively parallel computations
 - FPGA: by using many Processing Elements (PE), FPGA can compute many output elements in parallel

VGG16 Architecture

- For reference, download a Keras-based VGG16 implementation and weights of the model
- Reproduce the VGG16 model using Python, including convolution layers, fully-connected layers, pooling layers and activation functions
- Compare the result with the Keras model to verify the correctness
- Port the python implementation to C for later use

Software Simulation

Part of our python and C implementations

```
def conv_forward(x, w, b, pad, stride):
    ....
    batch, height, width, channels = x.shape
    num_of_filters, filter_height, filter_width, channels_f = w.shape
    assert channels == channels f
    new height = int(np.floor((height - filter height + 2 * pad) / stride) + 1)
    new width = int(np.floor((width - filter width + 2 * pad) / stride) + 1)
    A = np.zeros((batch, new_height, new_width, num_of_filters))
    x pad = np.zeros((batch, height + 2*pad, width+2*pad, channels))
    for bt in range(batch):
        for i in range(height):
            for j in range(width):
                for cn in range(channels):
                   x pad[bt,i+pad,j+pad,cn] = x[bt,i,j,cn]
    for bt in range(batch):
        for ft in range(num_of_filters):
            for i in range(new_height):
                for j in range(new width):
                    A[bt,i,j,ft] = b[ft] + np.sum(w[ft,:,:,:] *
                                   x_pad[bt, i*stride: i*stride + filter_height,
```

j * stride: j*stride + filter_width,:])

return A

COLUMBIA UNIVERSITY

// output_feature_map[batch_index][output_feature_map_index]

int current_output_feature_map_index = batch_index * fc_output_size +
 output_feature_map_index;

// initialize to 0

output_feature_map[current_output_feature_map_index] = 0;

// output_feature_map[batch_index][output_feature_map_index] +=

- / input_feature_map[batch_index][input_feature_map_index] *
- / kernel[output_feature_map_index][input_feature_map_index]

// input_feature_map[batch_index][input_feature_map_index]

int current_input_feature_map_index = batch_index * fc_input_size +
 input_feature_map_index;

// kernel[output_feature_map_index][input_feature_map_index]

int current_kernel_index = input_feature_map_index * fc_output_size +
 output_feature_map_index;

// do multiplication, add to previous value

// add bias: bias[current_output_feature_map_index]
output_feature_map[current_output_feature_map_index] +=
 bias[output_feature_map_index];

Algorithm Optimization - Winograd

• Winograd

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

G

- Memory consuming (need extra space to store intermediate results)
- Reduce 1/3 multiplications when using our dataflow pattern, while consumes about 2x of memory usage

- Directly convolution: 4 * 3 * 3 = 36 multiplications
- Winograd convolution: 4 * 4 = 16 multiplications
- 2.25x speed up

- Implement the software profiling in C to see which parts should we accelerate on FPGA
- Neglect max pooling, ReLU and softmax function, since the time they consume is negligible
- Time consumed comparison between convolution layer and fullyconnected layer using i5-8259U (without loading weights and data)

	Convolution Layers	Fully-connected Layers
Time Consumed / sec	92.02	4.15
Time Percentage / %	95.67	4.32

- Time complexity analysis
 - Convolutional layer:

O(conv_height * conv_width * conv_channel * conv_number * input_width * input_height)

e.g. 3 x 3 x 256 x 512 x 28 x 28 = 924,844,032

• Fully-connected layer:

O(fc_height * fc_width)

e.g. 4,096 x 4,096 = 16,777,216

Convolutional layer > fully-connected layer

- Memory consuming analysis
 - Convolutional layer:

O(conv_height * conv_width * conv_channel * conv_number) e.g. $3 \times 3 \times 256 \times 512 = 1,179,648$

- Fully-connected layer: O(fc_height * fc_width)
 e.g. 4,096 x 4,096 = 16,777,216
- Convolutional layer < fully-connected layer

• Computation intensive VS memory access intensive

	Convolution Layers	Fully-connected Layers	Ratio (conv / fc)
Weights number	14,710,464	123,633,664	0.12x
Multiplications number	16,271,474,688	123,633,664	131.61x

- Accelerator strategy
 - Compute convolutional layers on FPGA
 - Compute fully-connected layers using CPU
 - If we compute both these layers on FPGA
 - allocate some FPGA resources, e.g. DSPs, to fully-connected layers, which will slow down convolutions
 - copy weights (>200M bytes) from DRAM to SDRAM, which is timeconsuming (>30s)

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

- FPGA is good at fixed point operations, so we use fixed point instead of floating point to do convolutions
- Challenge:
 - Weights, input image and intermediate results have different ranges
 - Can not use a unified decimal point place, e.g. in the middle of a fixed point:1100.0011

Intern	nediate	outputs	of	each layer:		
Layer	1:	max:		955.85339	mean:	26.134333
Layer	2:	max:		3689.4717	mean:	150.90759
Layer	3:	max:		8024.4507	mean:	207.26363
Layer	4:	max:		11275.772	mean:	229.63486
Layer	5:	max:		15204.325	mean:	284.25253
Layer	6:	max:		15991.411	mean:	329.49692
Layer	7 :	max:		20796.828	mean:	199.77206
Layer	8:	max:		12113.225	mean:	174.05199
Layer	9:	max:		6186.3657	mean:	97.339676
Layer	10:	max:		2941.2952	mean:	21.802027
Layer	11:	max:		1955.9144	mean:	22.766939
Layer	12:	max:		953.95642	mean:	9.6327209
Layer	13:	max:		552.76392	mean:	1.3137941
Layer	14:	max:		41.791012	mean:	1.7962291
Layer	15:	max:		15.469688	mean:	0.58563447
Layer	16:	max:		22.734434	mean:	1.0392156

- Solution: dynamic fixed point
 - 1100.0011 VS 10.101100
 - length allocate to integer and decimal part differs from layer to layer
 - use 1000 samples to measure the intermediate output ranges of each layer
 - can be decided before runtime

Digits allocation to integer part and decimal part:

(Use fixed point 16, with 1 digit as sign)

Input:		Max:	255.0	Integer	digits:	8	Decimal	digits:	7
Layer	1:	Max:	955.85339	Integer	digits:	10	Decimal	digits:	5
Layer	2:	Max:	3689.4717	Integer	digits:	12	Decimal	digits:	3
Layer	3:	Max:	8024.4507	Integer	digits:	13	Decimal	digits:	2
Layer	4:	Max:	11275.772	Integer	digits:	14	Decimal	digits:	1
Layer	5:	Max:	15204.325	Integer	digits:	14	Decimal	digits:	1
Layer	6:	Max:	15991.411	Integer	digits:	14	Decimal	digits:	1
Layer	7:	Max:	20796.828	Integer	digits:	15	Decimal	digits:	0

- Conversion
 - Convert images and weights to dynamic fixed point numbers
 - Save these numbers and feed them into our C program
- Simulation
 - Dynamic fixed point operations
 - Inputs and outputs can have different decimal point place
 - e.g. $0011.1010 \times 011.00000 = 01010.111 (3.625 \times 3 = 10.875)$
 - Simulate fixed point operations on hardware
 - Helpful when debugging hardware functions

- Build tools for fixed point conversions
 and verification
- Some of the functions we build
 - Conversion float2fixed, fixed2float
 - Dynamic fixed point operations fixed_add, fixed_mul, fixed_shift, inverse, ReLU, etc.
 - Other functions

digit_of // how many digits should we assign to integer and decimal parts


```
def fixed_mul(x1, x2, integer_x1=8, integer_x2=8, integer_result=8):
    .....
    fixed point multiplication
    input: x1, x2 \rightarrow 16 bit fixed point
    integer_x1 / x2 : where is the input decimal point
    integer_result: where is the result decimal point
    return:
        result -> 16 bit fixed point
    .....
    adders = []
    fill_x1 = _helper_filler1(x1)
    fill_x2 = _helper_filler1(x2)
    # save all adders
    for i in range(32):
        if fill_x1[i] == '1':
            before = i
            after = 31 - i
            filled_num = _helper_filler2(fill_x2, before, after)
            adders.append(filled_num)
    # add them up, a 30 bit number
    add_result = _helper_mul_add(adders)
    cut_result = add_result[32:]
    int_part = integer_x1 + integer_x2
```

```
result = cut_result[new_int_start: new_int_start + 16]
```

new_int_start = int_part - integer_result + 1 # sign 1 bit

return result

Software Summary

IN THE CITY OF NEW YORK

50

Hardware System Structure

Data Alignment in SDRAM

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Dataflow Design

(in channel, out channel, weight)
(1,1,1)
(1,2,1)
(1,3,1)
(1,64,1)
(2,1,1)
(2,2,1)
(64,64,1)
(1.1.2)
(1,2,2)
(64,64,2)
(64,64,9)

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Q & A

