

Wave Visualizer
Final Report

Advisor:

Professor Stephen Edwards

CSEE 4840 Embedded Systems
Columbia University

Spring 2019

Tvisha Gangwani (trg2128@columbia.edu)

Jino Masaaki Haro (jmh2289@columbia.edu)
Ishraq Khandaker (ibk2110@columbia.edu)
Klarizsa Padilla (ksp2127@columbia.edu)

Zhongtai Ren (zr2208@columbia.edu)

1. Introduction
1.1. Wave Visualizer

The group presents a “Wave Visualizer” with two control options. For this project, we are using
the the ADC (LTC 2308) present on the FPGA to convert an analog input signal at channel 0 of the ADC.
The signal is being sampled at 12.5 MHz to load a buffer of 640 values, which is refreshed every time the
voltage is triggered at a user specified value. Furthermore, we are using the VGA display - similarly as in
lab 3 - to display the waveform from the input signal. We are also using an USB mouse to allow the user
to control the trigger value and edge by clicking on a “+” or “-” button on the screen. As a result, we
obtain a waveform as supplied in the ADC input, triggered at the value and edge selected by the user.

1.2. Motivation

The first idea that came to mind, thinking of an FPGA, was to make a gaming project which uses
sprites and movements similar to the lab 3 vga ball. But our group, consisting of two EE, two CE, and 1
CS student, wanted to combine our knowledge of software with that of hardware and work with signals.
One of the most used devices in the EE/CE labs is the oscilloscope, hence we wanted to learn more about
this highly utilized tool and how it works by constructing our own version using the FPGA and
peripherals.

2. Architecture
2.1. Overview

Architecture Image 1: System Architecture

1

Architecture Image 2: System Block Diagram

2.2. ADC

The ADC in this particular revision of the Altera DE1-SOC board is the LTC2308 chip. The
LTC2308 is a low noise, 500 ksps, 12-bit ADC with a serial interface. The serial data output clock
(ADC_SCLK) operates at any frequency up to 40 MHz, running from the 50 MHz internal conversion
clock. The low power consumption and small size makes this ADC chip ideal for battery operated and
portable applications. Furthermore, the 4-wire serial interface makes this ADC a good choice for isolated
and remote data acquisition systems.

Architecture Image 3 : ADC Block Diagram

2.3. Trigger

Trigger is the most important and tricky part of our wave visualizer design. We use a trigger to
detect the start point of the incoming digital signal value. Since the signal data transfer very fast, VGA
screen will output all possible signals in a chaotic manner. In order to avoid this and always display the
signal from a pinned point, we introduced trigger.

2

There are mainly two features of trigger: trigger_voltage and trigger_slope. We use them to track
a specific point of the signal. The method of judging the slope is as followed: if the result of ADC data
minus trigger_voltage change from negative to positive, the slope is positive, and vice versa. Then, we
can find a specific point of the signal and display one single signal curve on the screen.

2.4. Memory Pipeline
The data come from ADC memory will firstly compare with trigger_voltage. If the ADC data

meet the trigger_voltage and the slope is the same as what we set (either positive or negative), we will
give ADC part an enable signal. Then FPGA will start transfer the data from ADC part to VGA part.
Those data will be continuously stored in the frame buffer. Once the frame buffer is full, VGA part will
send a stop signal. And FPGA will stop the transmission and wait for the next enable signal. The key was
to use 2 buffers that, take turns storing input and displaying input on the screen. This allows us to have a
steady wave on the screen that does not flicker.

2.5. Framebuffers

DE1-SoC linux frame buffer is used for the signal display. There are two framebuffers used to
storage and display signal. Each time we use one of the them to update the ADC value. And we use
another one to display the signal. We use a enable signal and an disable signal to start and stop the process
of storagging data from ADC to framebuffers. To be more precise, we have a boolean value called “first”
that when toggled with will decide which buffer is to be displayed and which one is taking in input at a
given point in time.

2.6. Shift Registers

For this project, we decided to use two shift registers for communicating data to and from the
on-board ADC. In addition to three other signals, ADC takes as serial input a 6-bit value, ADC_DIN and
serially outputs a 12-bit value of the signal sample, ADC_DOUT. For the scope of this project, we only
worked with the signal sent to ADC channel 0. As a result, the shift register for ADC_DIN is always
loaded with the same 6-bit value to be shifted on the positive edge of the ADC clock, ADC_SCLK and
when the ADC chip-select, ADC_CS_N is low. After all the bits have be shifted, and hence, serially sent
to the ADC, this shift register is updated to have the same 6-bit value (6’b 100010) that was initially
loaded. The function used to send ADC_DIN to the ADC and the usage of the shift register is shown
below:

3

Architecture Image 4: Module for sending serial data to the ADC, using shift register

We used a similar idea for serially accepting data from the ADC into a shift register, which is

then stored in a separate register every 12 cycles of the ADC_SCLK. This shift register is initialized to
have a 12 bit value of all zeros. When the ADC_CS_N is low, a bit is shifted every ADC_SCLK cycle,
starting with the most significant bit of ADC_DOUT. When the ADC_CS_N goes high after the 12
cycles, this shift register is copied into another register, ADC_REG, which is then passed on to the VGA
buffers every time the value is updated, to then be displayed on the VGA monitor. The function used to
receive ADC_DOUT serially from the ADC and the usage of the shift register is shown below:

4

Architecture Image 5: Module for receiving serial data from the ADC, using shift register

5

2.7. VGA

Architecture Image 6: Final image of Display

The VGA display was divided into 3 sections- the display from the hardware, software and the

waveform. The background was made a black color with the graph hard coded in with lines drawn every
120 pixels in dark blue. There is a middle line to indicate the center of the screen in yellow. The
waveform is represented in white and displays the values coming in from the ADC. In order to display the
waveform we had to create two memory buffers. This is so that we display one buffer, while the other one
is loading from the ADC. The memory buffer can hold 640 values each 16 bits long. When the wave hits
a trigger value the ADC starts sending “valid” data that has to be captured by one of the buffers. When the
buffer is “full” its changes the boolean variable to full and holds it until it receives a new “valid” signal.
At this point it will switch to the second buffer and start storing values in the second buffer. While the
second buffer is loading we start to display the first buffer on the screen (aka the wave) in white. The code
for the memory buffer can be seen in the screenshot below.

6

Architecture Image 7: Code for Memory buffers.

The last part of the display consists of the mouse and the buttons. Both of which were supposed
to initially come in from the software. We were able to control the mouse using ioctl commands that came
in from the software and edited the “display of the mouse which we had hard coded onto the screen. We
we hardcoded the structure of the mouse into the hardware as shown below.

Architecture Image 8: Hardcoded structure of mouse in hardware.

Due to time restrictions, we were unable to bring in the various buttons from the software as

previously decided. Thus, we had to make the last minute decision of hardcoding the buttons into the

7

hardware as well. Due to memory restrictions, and so as to not make the display too cluttered, we decided
to just draw two letters on the screen. A “T” to represent the trigger value and an “R” to represent whether
the trigger was on a rising or falling edge. We also hard coded in a “+” to increment the values and a “-”
to decrement the values. The trigger value goes from 0 - 3 and the rising value goes from 0-1.We took in
values from the software that represent the clicks of the mouse on the various buttons. In order for this to
work we had to edit the ioctl functions we made in lab3. We had to add in two more values, one for the
trigger and one for the rising or falling edge of the wave.

2.8. Mouse

There are three steps to set up the USB mouse to be available for the FPGA and use the
information we get to realize the user interface.

The first step is to connect FPGA USB port with USB-mouse. We use HID protocol to
communicate between FPGA and mouse. The details of using HID can be found here: ​http://libusb.org​. In
the file “device class definition for human interface devices (HID)” (hid1_11.pdf,
https://usb.org/sites/default/files/documents/hid1_11.pdf​), page 9, we will find all the protocol codes for
USB devices. And the protocol code for mouse is 2. Set the protocol code to 2 and then FPGA will try to
find a connection with USB-mouse device.

Architecture Image 9 : USB mouse protocol codes

The next step is to get data from USB-mouse. Reading the datasheet, we can know that there are

3 sections of data coming into the USB port. Byte 0 to 2 are Button status, X movement and Y movement,
respectively. I built a structure to storage those three bytes.

Architecture Image 10 : USB mouse Data load

8

http://libusb.org/
https://usb.org/sites/default/files/documents/hid1_11.pdf

Meaning of incoming data

(Source: ​https://wiki.osdev.org/USB_Human_Interface_Devices ​)

For the third step, we implement the USB mouse data into two distinct purposes. (1)
Continuously sending the mouse position to hardware so that we can display an arrow on the VGA
screen. (2) Interface user’s click with the parameter changing.

Since we need to set up the trigger’s slope and voltage, we put different buttons for different
operations on VGA screen. Each time we click the mouse, FPGA will decide which button has been
clicked based on the x,y position of mouse. Then, FPGA can change the corresponding parameter value.

3. Hardware Design

For the hardware design of this project, we used the VGA Ball component from lab 3 and created
the interfaces necessary for running the project. We created an adc interface, and a hex interface in
addition to using the vga_ball interface from lab 3 with necessary edits. The QSYS connections as well as
the signals are shown in the figures below.

Hardware Design Image 1: QSYS component and interfaces

9

https://wiki.osdev.org/USB_Human_Interface_Devices

Hardware Design Image 2: Component signals view

4. Software Overview

We have built a user interface (UI) for the wave visualizer that allows trigger control/interaction.
The main idea is that we can control the mouse to click the different buttons on VGA screen in order to
that change the value of two modifiable parameters.

We create the functions as follows:

(1) Open and connect to the USB mouse.
(2) Read the mouse position with the read_mouse.c and read_mouse.h files.
(3) Create the structure to hold and update the parameters’ value (x,y position, trigger voltage, slope,

etc.) then pass the value from software to hardware.
(4) Use mouse click status and mouse position to judge which button (displayed on the VGA screen)

has been clicked so that the corresponding parameter value - such as trigger_value, trigger_slope,
etc. - can be changed.

Function (1) and (2) are realized in the usbmouse.c and usbmouse.h files. Function (3) is realized

in the vga_ball.c and vga_ball.h files. Function (4) is realized in the mouse.c file.

10

Software Image 1 : USB mouse c codes

5. Memory Access and Timing
5.1. Model Sim and Test Bench

Model Sim and test benches were heavily used in the construction of this project as timing and
the sequenization of data handoff are particularly crucial for live signal. In the test bench we created
signals so that we could follow various variables that we had to make sure they were being synchronised
as anticipated. This was quite helpful for debugging purposes.

5.2. “Magic” Timing Diagram Paper

The format of the paper in college ruled notebook is with multiple lines. We can rotate it 90
degrees and get a fixed interval paper. Then we can use it to draw time diagram and signal.

Memory Access and Timing Image 1: time diagram for ADC part

11

Memory Access and Timing Image 2: Trigger logic

5.3. ADC Timing Characteristics

Memory Access and Timing Image 2 : ADC Timing Characteristics

12

Memory Access and Timing Image 3 : ADC Timing Diagram

Please note that the FPGA user manual refers to the CONVST signal as the ADC_CS_N signal,

the SCK signal as the ADC_SCLK, the SDI as the ADC_DIN, and the SDO signal as ADC_DOUT.

6. Project Plan
6.1. Lessons Learned

The labs are really useful for our project. We modified Lab 1 to display the digital value coming
from ADC on the 7 segment hex display. We use lab 2 materials to interface the HID USB mouse to
control the trigger values and edge. We use lab 3 lessons to link hardware and software and display the
converted ADC signal data on the VGA screen.

6.2. Timeline
- Separate tasks into 3 parts: ADC data load; VGA display; mouse control.
- Block diagram and Simulation

Samples into the buffers logic: experiment with Model sim that comes with quartus for the
simulations.

- Interfaces and communication:

Load ADC data stream: get the digital data stream from analog signal generator.
Waveform buffer 640 samples, and 9 bit each sample.

- Storage and display on the VGA screen:

Trigger value (rising edge) then start loading data
Have it display the waveform
Horizontal sweep (need a trigger event)
Vertical (just math, keeping track)

- Figure out what the user interface will be:

Mouse to control buttons virtually

13

Decide if information will be on vga’s
What will the screen look like (text and other information on the screen?)
Make two waveform buffers and be displaying one while we are loading the other one
Grid stuff for text-- like pacman (use of tiles)

7. Debugging
7.1. Mouse
Although the values of the mouse came in from the software, the mouse was displayed using the

hardware. This gave rise to a small issue where we were only able to display the mouse on one part of the
screen. It could not move past the 320’th pixel horizontally. This, however, was an easy fix and was made
to work by ignoring the least significant bit of hcount while drawing it up on the screen. Another
interesting thing to note is that the initial tile for the arrow, as well as every tile in the second software
iteration (described in detail in section 10), was coded in expected direct order. This caused the images to
appear flipped when initially displayed on the screen. For the final software iteration, all tiles were coded
in a “mirror” manner, which allowed a direct accurate display without the need of a reordering function.

7.2. Buffers
We had to create two buffers, as previously mentioned, to display the waveform. We had some

issues while switching between the the two buffers and displaying the wave. This lead to an unwanted
line blinking at the top of the screen. This was solved by matching up the values to the correct inputs and
outputs to the two buffers to produce the correct form of the wave on the screen. We also had an issue
with the index to which the pixel values were being saved. Thus, initially we had the wave moving down
even though the voltage was increasing and moving up when it was increasing. But, we were able to find
a solution for this by subtracting the value of the indexes from 480.

The output for the mouse and the rising and trigger values were coming in from the software. We
initially had some problems with how these values were created. It took us sometime to find the bug in
the code. But, we were successfully able to fix the issue.

We tried to rename all the components of the code to “vga” instead of “vga_ball” and also to
break up the code into three files. A top file that governed the other two files - adc and vga. However, on
attempting to do this not only did the ADC values no longer work but we also lost the vga driver that
made the link between the hardware and the software. After several hours of trying to figure out where the
issues were, we decided to just merge the files into one and this is how we were able to get all of the
components working together.

7.3. Integration
Initially, we planned to design our system integration such that there would be three separate

SystemVerilog files: one SV file for the ADC modules and data, one SV file for the VGA modules and
display, and one top module that would combine these two files to run the entire oscilloscope project.
However, after setting up per plan, while testing the functionality of this component, we encountered
errors and the programs did not run. Furthermore, we were unable to combine the hardware and software
pieces using the kernel. We anticipate that using a clock for each SV piece could have contributed to
timing or synchronization errors. In addition, while setting up the project, we did not consider the kernel
piece for hardware-software communication. As a result, when we tested to take the mouse input and
reflect on the hardware, we were unable to accept the ioctl() calls and send the information. In order to

14

overcome the integration challenges, we decided to use the lab 3 hardware modules and files to
implement the VGA, and then added the ADC pieces to integrate the two components.

8. If Time Actually “Permitted”

Had we had more time, we would have had the ability to made the user interface a lot nicer, for
example by fully integrating the second iteration of the software code (see section 10.1). We would have
worked on using the software code to import the buffers that held the values for the various letters and
numbers. We would also have been able to add a lot more functionality to our program. We had initially
decided to add in operations on values like “horizontal sweep” and “vertical sweep” and display values
like amplitude and labels that we were not able to accomplish by the deadline as the ADC took a long
time for us to figure out and have control over.

9. Previous Iterations
9.1. Software

The user interface had a number of iterations, two of which were completely discarded. The first
iteration included a static map of pixels to be displayed and was combined into a single file along with the
mouse function.

15

Debugging Image A: Software Iteration 1

 Intended to be a single c file holding UI and drivers

This code worked by reading in information from the standard "/dev/input/mice" used in most
linux systems. The mouse display was created through pixel switches offset from read data. It read
information from the mouse as three separate sections each corresponding to x position, y position, and
button click status (any extraneous information was never allowed to be read, and as such discarded). It
compared the mouse location and left click status to the hardcoded button positions, shown towards the
bottom of Debugging Image A. If click was active and the position corresponded to a button, the
corresponding function was called to change the displayed text. Dynamic character arrays (array memory
allocations, not “arrays” in any sort of sense, simply a way to think of how numbers were displayed) were
used to hold all changing text fields and then passed to a “VGA_BOX” module. Standard static character
arrays were used for non-changing text displays and also sent to the “VGA_BOX” module. This software
was discarded, as there was not enough memory on our SD card to display the static buttons.

16

The second iteration of the software changed from this static pixel mapping to the use of tiles, as
these would be passed in a temporary (ever-changing) buffer and did not have to be stored anywhere
beyond the static pixels of the screen. In addition, this iteration differed from the first in the sense that the
mouse was coded in a separate c file as noted in the Mouse Section (2.7). Being a less complex program,
this version of the mouse remained in use beyond the failure of this software iteration as a whole. An
excerpt of the tile encodings is shown in Debugging Image B to demonstrate formatting of a standard tile.

Debugging Image B : Tile Format

For use in software iteration 2

This iteration saw everything from static text to dynamic values interpreted in this tile format.
Similar to the previous iteration, an (x,y,click) check was performed against predetermined button
positions, calling the corresponding function if a button was clicked.

17

Debugging Image C: Case Switches for Button Correspondence

As seen in Debugging Image C, there were many functions in this iteration, all associated with

distinct button variable change options. As the values presented on the screen were all tiles encoded in bit
display data (8x8), there was no straightforward way to perform operations with any given variable on the
screen. To make intended button operations work, a calculator had to be coded to work with “images.”

18

This calculator had different restrictions in each button function to correspond with the limits of
the given operation (for example decimal operations in voltage, negative operations in position options,
division in horizontal sweep, etc.).

Debugging Image D : Set of volatile values for display

where each internal array was passed as a continuous bit stream to the
receiving buffer

An issue this iteration of the software would have had would be that of bit reversal. As the bits on

the hardware code were being read in the opposite direction, the image was a flipped version of that
which was encoded in the tile data. To fix this, a function was then written in the hardware code to flip
incoming bit buffers. An alternate option would have been to do an equivalent function on the software
side before forwarding the bits or recode the tiles with reversed bits.

19

Debugging Image E : Some Button Function Logic

Returns to buffer excluded, functions set as void, as this was never fully integrated
Shown functions (in order): Increase vertical sweep, set slope trigger to positive, increase trigger value in

units

20

10. Conclusion

Learning how to program an ADC was extremely challenging but we learned a wealth of new
skills including: research of product, usage of debugging tools, and the importance of timing.
We are all new to Verilog programing this semester, at the end of lab1 we would not have imagined we
would come to enjoy the process of planning, designing and implementing a solution on an FPGA. Now,
we enjoy the coding and don’t want to give the FPGA back.

Communication is really important for a group project. We always need to talk with each other to
make sure that we are on the same page. It is also a challenge to integrate everyone’s job, but we did it.

We are very thankful for the invaluable support from the TAs and Professor Edwards. We met
many problems and challenges throughout the project. Without the patient explanation and suggestions
from Professor Edwards, we would not have been able to get the final wave visualizer.

11. References

https://wiki.osdev.org/USB_Human_Interface_Devices
https://usb.org/sites/default/files/documents/hid1_11.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/2308fc.pdf
https://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2015to2016/hj424/

12. Repository: ​https://github.com/oscilloscope-prime/scope

13. Appendix: Code Listing

13.1. adc.sv (Functional ADC pre-integration, working with JTAG)
// CSEE 4840 Final Project: working with DE1-soc ADC
//
// Spring 2019
//
// By: oscilloscope group
// Uni: Ishraq (ibk2110) and Klarizsa (ksp2127)

module adc(input logic CLOCK_50,

output logic ADC_CS_N,
output logic ADC_SCLK,
output logic ADC_DIN,
output logic [6:0] HEX0, HEX1, HEX2, HEX3, HEX4, HEX5,
output logic [11:0] ADC_REG,
input logic ADC_DOUT,

output logic valid,
input logic full,
input logic [11:0] trig,
input logic rising

);

//logic [11:0] ADC_REG;

logic ADC_DoSth;

21

https://wiki.osdev.org/USB_Human_Interface_Devices
https://usb.org/sites/default/files/documents/hid1_11.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/2308fc.pdf
https://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2015to2016/hj424/
https://github.com/oscilloscope-prime/scope

logic validSample = 1'd 0;

logic [3:0] disp0, disp1, disp2, disp3, disp4, disp5;

clockdiv cd(.clk(CLOCK_50), .en(ADC_SCLK));

dosomething ds(.clk(CLOCK_50), .en(ADC_DoSth));

chipselect cs(.mclk(CLOCK_50), .ds(ADC_DoSth), .csn(ADC_CS_N));

toADC data2ADC(.mclk(CLOCK_50), .ds(ADC_DoSth), .cs(ADC_CS_N), .din(ADC_DIN));

fromADC data4mADC(.mclk(CLOCK_50), .ds(ADC_DoSth), .cs(ADC_CS_N), .dout(ADC_DOUT),

.out(ADC_REG), .validSample(validSample));

sendData send2vga(.validSample(validSample), .valid(valid));

bin2dec b2d(.bin_data(ADC_REG), .dec0(disp0), .dec1(disp1), .dec2(disp2), .dec3(disp3), .dec4(disp4),

.dec5(disp5));

hex7seg h0(.in(disp0), .out(HEX0));
hex7seg h1(.in(disp1), .out(HEX1));
hex7seg h2(.in(disp2), .out(HEX2));
hex7seg h3(.in(disp3), .out(HEX3));
hex7seg h4(.in(disp4), .out(HEX4));
hex7seg h5(.in(disp5), .out(HEX5));

endmodule

module clockdiv(input logic clk, output logic en);

 parameter clockDivisor = 4'd 4 ;
 //register stores the value of clock cycles
 logic [3:0] i = 4'd 0;

 always_ff @(posedge clk)
 begin

 i <= i + 4'd 1;
 //resetting the clock
 if (i >= (clockDivisor-1))
 begin
 i <= 4'd 0;
 end

 end

 assign en = (i<clockDivisor/2)?1'b0:1'b1;

endmodule

module dosomething(input logic clk, output logic en);

logic [3:0] counter = 4'd 0;

22

logic up_down = 1'd 0;

always_ff @(posedge clk)
begin

if(counter == 4'd 0 && up_down == 1'd 0)
begin

up_down <= 1'd 1;
counter <= counter + 4'd 1;

end
else if(counter == 4'd 1 && up_down == 1'd 1)
begin

up_down <= 1'd 0;
counter <= counter + 4'd 1;

end
else if (counter == 4'd 2 && up_down == 1'd 0)
begin

counter <= counter + 4'd 1;
end
else
begin

counter <= 4'd 0;
end

end

assign en = up_down;

endmodule

module chipselect(input logic mclk, input logic ds, output logic csn);

logic [5:0] counter_down = 6'd 0; //counter(we need 12 cycles of low, 1 cycle of high)
logic [5:0] counter_up = 6'd 0;
logic chipselect = 1'd 1; //to control the value of chipselect
logic hold1, hold2, hold3; //to introduce a cycle of delay on chipselect

always_ff @ (posedge mclk)
begin

if(ds && counter_up <= 6'd 20 && counter_down == 6'd 0)
begin

chipselect <= 1'd 1;
counter_up <= counter_up + 6'd 1;

end

else if(ds && counter_up == 6'd 21 && counter_down == 6'd 0)
begin

chipselect <= 1'd 0;
counter_down <= counter_down + 6'd 1;
counter_up <= 6'd 0;

end

else if(ds && counter_up == 6'd 0 && counter_down <= 6'd 12)
begin

23

chipselect <= 1'd 0;
counter_down <= counter_down + 6'd 1;

end

else if(chipselect == 1'd 0 && counter_down == 6'd 13)
begin

counter_down <= 6'd 0;
counter_up <= 6'd 0;
chipselect <= 1'd 1;

end
hold1 <= chipselect;
hold2 <= hold1;
hold3 <= hold2;

end

assign csn = hold3;

endmodule

//controls the D_in signal
module toADC (input logic mclk, input logic ds, input logic cs, output logic din);
//make a shift register to send data to ADC

logic [5:0] shiftreg = 6'b 110010; //send to channel 1. for channel 0 ==> 100010
logic [5:0] counter = 6'd 0;

always_ff @ (posedge mclk)
begin

if (!cs && ds && counter < 6'd 6)
begin

din <= shiftreg[5];
shiftreg [5:1] <= shiftreg[4:0];
shiftreg [0] <= 1'd 0;
counter <= counter + 6'd 1;

end

else if(counter == 6'd 6 && !ds && cs)
begin

din <= din;
shiftreg <= 6'b 100010;
counter <= 6'd 0;

end

else

din <= din;

end

endmodule

//controls the D_out signal
module fromADC (input logic mclk, input logic ds, input logic cs, input logic dout, output logic [11:0] out, output logic
validSample);
/*

24

input logic mclk, ds, cs, dout;
output logic [11:0] out;

*/
logic [5:0] counter = 6'd 0;

logic [11:0] shiftreg;

logic load_data = 1'd 1; //check this if we have issues displaying

always_ff @ (posedge mclk)
begin

if (!cs && ds && counter <= 6'd 11)
begin

shiftreg = {shiftreg[10:0], dout};
counter <= counter + 6'd 1;
load_data <= 1'd 1;

end

else if(cs && !ds && load_data)
begin

//counter = 6'd 0;
//out <= shiftreg;
out[11:0] <= shiftreg[11:0];
counter = 6'd 0;
load_data <= 1'd 0;
validSample <= 1'd 1;

end
else
begin

validSample <= 1'd 0;
end

end

endmodule

module sendData(input logic validSample, output logic valid);

always_comb
begin

/* if(full)
valid <= 1d'0;

else if(!full && validSample):
valid <= 1d'1;

else
valid <= 1d'0;

*/
valid <= validSample;

end
endmodule

module hex7seg (input logic [3:0] in, output logic [0:7] out);

logic [6:0] pre_seg_dis;
always @ (*)
begin

25

case(in)

4'h1: pre_seg_dis = 7'b1111001;
4'h2: pre_seg_dis = 7'b0100100;
4'h3: pre_seg_dis = 7'b0110000;
4'h4: pre_seg_dis = 7'b0011001;
4'h5: pre_seg_dis = 7'b0010010;
4'h6: pre_seg_dis = 7'b0000010;
4'h7: pre_seg_dis = 7'b1111000;
4'h8: pre_seg_dis = 7'b0000000;
4'h9: pre_seg_dis = 7'b0011000;
4'ha: pre_seg_dis = 7'b0001000;
4'hb: pre_seg_dis = 7'b0000011;
4'hc: pre_seg_dis = 7'b1000110;
4'hd: pre_seg_dis = 7'b0100001;
4'he: pre_seg_dis = 7'b0000110;
4'hf: pre_seg_dis = 7'b0001110;
4'h0: pre_seg_dis = 7'b1000000;

endcase

end

assign out = pre_seg_dis;

endmodule

module bin2dec (input logic [11:0] bin_data, output logic [3:0] dec0, output logic [3:0] dec1, output logic [3:0] dec2,
output logic [3:0] dec3, output logic [3:0] dec4, output logic [3:0] dec5);

always @ (*)
begin
dec0 = (bin_data*409600/4096) %10;
dec1 = (bin_data*409600/4096 /10) %10;
dec2 = (bin_data*409600/4096 /100) %10;
dec3 = (bin_data*409600/4096 /1000) %10;
dec4 = (bin_data*409600/4096 /10000) %10;
dec5 = (bin_data*409600/4096 /100000) %10;
end

endmodule

13.2. vga_ball.sv (All components integrated)

/*
 * Avalon memory-mapped peripheral that generates VGA & ADC interface
 *
 * Oscilloscope Project
 */

module vga_ball(input logic clk,
 input logic reset,
 input logic [15:0] writedata,
 input logic write,

26

 input chipselect,
 input logic [2:0] address,

//VGA logic
 output logic [7:0] VGA_R, VGA_G, VGA_B,
 output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n,
 output logic VGA_SYNC_n,

//ADC logic
output logic ADC_CS_N,
output logic ADC_SCLK,
output logic ADC_DIN,
input logic ADC_DOUT,

output logic [6:0] HEX0, HEX1, HEX2, HEX3, HEX4, HEX5

);

logic [11:0] ADC_REG;

logic [3:0] testHex;
initial begin

testHex = 4'd0;
end

logic prev_trig;
logic cur_trig;

/*
assign prev_trig = 0;
assign cur_trig = 0;

*/
logic ADC_DoSth;

logic [3:0] disp0, disp1, disp2, disp3, disp4, disp5;

logic [8:0] sample;
assign sample [8:0] = ADC_REG[11:3];

logic ready;
logic valid;
//assign valid = 1;

logic full;

logic [11:0] trig =12'd1;
//assign trig = 12'd 2000; //trigger looks for 2V
logic [11:0] trig_thousand;
assign trig_thousand = trig * 12'd 1000;

logic rising = 1'b 1;
//assign rising = 1'b 1; //for rising edge. toggle to 0 for falling

/* ==vga
stuff==
======= */

 logic [10:0] hcount;

27

 logic [9:0] vcount;

 logic [7:0] background_r, background_g, background_b;
 logic [10:0] posX;
 logic [9:0] posY; //trigger
 logic [10:0] dummy;

 logic [1:0] flag;
 logic [1:0] flag2;

//some variables for memory

 /*input logic clk,*/
 logic [9:0] a1;
 logic [8:0] din1;
 logic we1;
 logic [15:0] dout1;

 logic [9:0] a2;

 logic [8:0] din2;
 logic we2;
 logic [15:0] dout2;

/* == ADDING
MOUSE === */

logic [7:0] shape;
logic [2:0] a_m;

logic [15:0] shape_p;
logic [3:0] a_p;

logic [15:0] shape_mi;
logic [3:0] a_mi;

logic [15:0] shape_t;
logic [3:0] a_t;

logic [15:0] shape_r;
logic [3:0] a_r;

logic [15:0] shape_p1;
logic [3:0] a_p1;

logic [15:0] shape_mi1;
logic [3:0] a_mi1;

//FOR ZERO RISING

logic [15:0] shape_o;
logic [3:0] a_o;

//FOR ONE RISING
logic [15:0] shape_one;
logic [3:0] a_one;

mouse mouse(.*);

28

plus p(.*), p1(clk, shape_p1,a_p1);
minus m(.*), mi1(clk, shape_mi1,a_mi1);
T t(.*);
R r(.*);

//for rising
zero z(.*);
one o(.*);

//FOR ZERO Trigger

logic [15:0] shape_o_trg;
logic [3:0] a_o_trg;

//FOR ONE Trigger
logic [15:0] shape_one_trg;
logic [3:0] a_one_trg;

logic [15:0] shape_two;
logic [3:0] a_two;

logic [15:0] shape_th;
logic [3:0] a_th;

//for trigger

zero z1(clk,shape_o_trg,a_o_trg);
one o1(clk,shape_one_trg,a_one_trg);
th th(.*);
two two(.*);

/* == ADDING
MOUSE === */

logic first = 1'b1;

logic [9:0] a_display;
logic [9:0] a_input = 10'b0;
logic [15:0] dout_display;
logic [8:0] din_input;
logic we_input;
assign we_input = valid;
assign din_input = sample;
assign din1 = din_input;
assign din2 = din_input;

//FOR RISING
assign a_one = vcount - 400;
assign a_o = vcount -400;

//FOR TRIG
assign a_one_trg = vcount - 325;
assign a_o_trg = vcount - 325;
assign a_two = vcount - 325;
assign a_th = vcount - 325;

logic [15:0] shape_trg;
logic [3:0] a_trg;

29

logic [15:0] shape_rising;
logic [3:0] a_rising;

memory m1(clk, a1, din1, we1, dout1),
 m2(clk, a2, din2, we2, dout2);

vga_counters counters(.clk50(clk), .*);

always_comb begin
//logic for RISING

if(rising)
begin
shape_rising = shape_one;
a_rising = a_one;
end

else
begin
shape_rising = shape_o;
a_rising = a_o;

end

end

always_comb begin
//logic for trigger

if(trig == 12'd1)
begin
shape_trg = shape_one_trg;
a_trg = a_one_trg;
end

else if (trig == 12'd0)
begin
shape_trg = shape_o_trg;
a_trg = a_o_trg;

end

else if (trig == 12'd2)

begin
shape_trg = shape_two;
a_trg = a_two;

end

else
begin
shape_trg = shape_th;
a_trg = a_th;

end

end

30

always_comb begin

 if (first) begin
 a1 = a_display;
 a2 = a_input;
 //din2 = din_input;
 dout_display = dout1;
 we1 = 1'b0;
 we2 = we_input;
 end else begin
 a1 = a_input;
 a2 = a_display;
 //din1 = din_input;
 dout_display =dout2;
 we1 = we_input;
 we2 = 1'b0;
 end
 end

 logic start;

initial begin
start = 1'd1;

end

 always_ff @(posedge clk)

begin
if (start) begin
full <= 1'b1; //changed to 0
a_input = 10'b0;
first = 1'b1;
start = 1'd 0;
end

else
begin

if (valid)begin

if(full)

begin
full <= 1'b0;
end

else if(a_input == 10'd639) begin //added here

a_input <= 10'd0;
full <= 1'b1;
first<= ~ first;

end
else begin

a_input <= a_input + 10'd1;
full <= full;

end
end
else if (!valid) begin

full <= full;

31

end
end

 end

 always_ff @(posedge clk)
 if (reset) begin

background_r <= 8'h0;
background_g <= 8'h0;
background_b <= 8'h80;

posX <= 8'd50;
posY <= 8'd50;
flag <= 1'd0;
flag2 <= 1'd0;
dummy <= hcount;
rising<= 1'd1;
trig <=12'd1;

 end else if (chipselect && write) begin

 case (address)

 3'h0 : posX <= writedata;
 3'h1 : posY <= writedata;
 3'h2 : rising <= writedata;
 3'h3 : trig <= writedata;

 //3'h0 : din_input<= writedata[10:0];

 //3'h1 : posY <= writedata[10:0];

 endcase

end

assign a_m = vcount - posY;
assign a_p = vcount - 350;
assign a_mi = vcount - 350;
assign a_t = vcount - 325;
assign a_r = vcount - 400;

assign a_p1 = vcount - 425;
assign a_mi1 = vcount - 425;

 always_comb begin

a_display = hcount[10:1];
 {VGA_R, VGA_G, VGA_B} = {8'h0, 8'h0, 8'h0};
 if (VGA_BLANK_n)begin

//if((hcount[10:0]< posX+30) && (hcount[10:0] > posX-30) && (vcount[9:0]>posY-15) && (vcount[9:0] <
posY + 15))

32

//if (((hcount[10:0] - posX)*(hcount[10:0]- posX)) + (4*(vcount[9:0]- posY)*(vcount[9:0]- posY)) < 900)
//if ((vcount[9:0] == posY) &&((hcount[10:0]< posX+30) && (hcount[10:0] > posX-30)))
if(((hcount[10:1]< posX+8) && (hcount[10:1] >= posX) && (vcount[9:0]>=posY) && (vcount[9:0] < posY +

8)) && (shape[hcount[10:1] - posX]))
//if (shape[hcount[10:1] - posX])
{VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'hff};

else if(((hcount[10:1]< 550+16) && (hcount[10:1] >= 550) && (vcount[9:0]>=350) && (vcount[9:0] < 350 +
16)) && (shape_p[hcount[10:1] - 550]))

//if (shape[hcount[10:1] - posX])
{VGA_R, VGA_G, VGA_B} = {8'h00, 8'hff, 8'h00};

else if(((hcount[10:1]< 500+16) && (hcount[10:1] >= 500) && (vcount[9:0]>=350) && (vcount[9:0] < 350 +

16)) && (shape_mi[hcount[10:1] - 500]))
{VGA_R, VGA_G, VGA_B} = {8'h00, 8'hff, 8'h00};

else if(((hcount[10:1]< 450+16) && (hcount[10:1] >= 450) && (vcount[9:0]>=325) && (vcount[9:0] < 325 +

16)) && (shape_t[hcount[10:1] - 450]))
{VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'hff};

else if(((hcount[10:1]< 450+16) && (hcount[10:1] >= 450) && (vcount[9:0]>=400) && (vcount[9:0] < 400 +
16)) && (shape_r[hcount[10:1] - 450]))

{VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'hff};

else if(((hcount[10:1]< 550+16) && (hcount[10:1] >= 550) && (vcount[9:0]>=425) && (vcount[9:0] < 425 +

16)) && (shape_p1[hcount[10:1] - 550]))
//if (shape[hcount[10:1] - posX])
{VGA_R, VGA_G, VGA_B} = {8'h00, 8'hff, 8'h00};

else if(((hcount[10:1]< 500+16) && (hcount[10:1] >= 500) && (vcount[9:0]>=425) && (vcount[9:0] < 425 +

16)) && (shape_mi1[hcount[10:1] - 500]))
{VGA_R, VGA_G, VGA_B} = {8'h00, 8'hff, 8'h00};

//else if ((hcount[10:1]< 550+15) && (hcount[10:1] > 550-15) && (vcount[9:0]>350-15) && (vcount[9:0] <
350 + 15))

//{VGA_R, VGA_G, VGA_B} = {8'h00, 8'hff, 8'h00};
//else if ((hcount[10:1]< 500+15) && (hcount[10:1] > 500-15) && (vcount[9:0]>350-15) && (vcount[9:0] <

350 + 15))
//{VGA_R, VGA_G, VGA_B} = {8'h00, 8'hff, 8'h00};

//RISING
else if(((hcount[10:1]< 525+16) && (hcount[10:1] >= 525) && (vcount[9:0]>=400) && (vcount[9:0] < 400 +

16)) && (shape_rising[hcount[10:1] - 525]))
{VGA_R, VGA_G, VGA_B} = {8'hff, 8'h00, 8'hff};

else if(((hcount[10:1]< 525+16) && (hcount[10:1] >= 525) && (vcount[9:0]>=325) && (vcount[9:0] < 325 +

16)) && (shape_trg[hcount[10:1] - 525]))
{VGA_R, VGA_G, VGA_B} = {8'hff, 8'h00, 8'hff};

else if (dout_display[9:0] == (480 - vcount[9:0]))
//else if (sample[8:0] == (480 - vcount[9:0]))

{VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'hff};

else if(vcount[9:0] == 240)
{VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'h00};

else if ((hcount[10:1]%60 == 0 || vcount[9:0]%60 == 0))

 {VGA_R, VGA_G, VGA_B} = {8'h00, 8'h33, 8'h66};

33

//else if (dout[9:0] == vcount[9:0])

//{VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'hff};

/*

if (hcount[10:6] == 5'd3 &&
 vcount[9:0]== 10'd1023)
 {VGA_R, VGA_G, VGA_B} = {8'hff, 8'hff, 8'hff};*/

else
 {VGA_R, VGA_G, VGA_B} =

 //{background_r, background_g, background_b};
//{ 8'hff, 8'h00, 8'hff };
 { 8'h00, 8'h00, 8'h00 };

end

 end

/* ==adc
stuff==
======= */

clockdiv cd(.clk(clk), .en(ADC_SCLK));

dosomething ds(.clk(clk), .en(ADC_DoSth));

chipselect cs(.mclk(clk), .ds(ADC_DoSth), .csn(ADC_CS_N));

toADC data2ADC(.mclk(clk), .ds(ADC_DoSth), .cs(ADC_CS_N), .din(ADC_DIN));

fromADC data4mADC(.mclk(clk), .ds(ADC_DoSth), .cs(ADC_CS_N), .dout(ADC_DOUT), .out(ADC_REG),

.ready(ready));

trackTrig trigSig(.mclk(clk), .ADC_REG(ADC_REG), .trig(trig_thousand), .cur_trig(cur_trig),

.prev_trig(prev_trig), .rising(rising), .full(full));

sendData send2vga(.mclk(clk), .testHex(testHex), .ready(ready), .cur_trig(cur_trig), .full(full), .valid(valid),

.prev_trig(prev_trig));

bin2dec b2d(.bin_data(ADC_REG), .dec0(disp0), .dec1(disp1), .dec2(disp2), .dec3(disp3), .dec4(disp4),
.dec5(disp5));

hex7seg h0(.in(testHex), .out(HEX0));
hex7edge h1 (.in(rising), .out(HEX1));
hex7seg h2(.in(disp2), .out(HEX2));
hex7seg h3(.in(disp3), .out(HEX3));
hex7seg h4(.in(disp4), .out(HEX4));
hex7seg h5(.in(disp5), .out(HEX5));

/* ==vga
stuff==
======= */

endmodule

34

module clockdiv(input logic clk, output logic en);

 logic [1:0] i = 2'b 00;

 always_ff @(posedge clk)
 begin

 i <= i + 2'd 1;

 end

 assign en = i[1];

endmodule

module dosomething(input logic clk, output logic en);

logic [3:0] counter = 4'd 0;
logic up_down = 1'd 0;

always_ff @(posedge clk)
begin

if(counter == 4'd 0 && up_down == 1'd 0)
begin

up_down <= 1'd 1;
counter <= counter + 4'd 1;

end
else if(counter == 4'd 1 && up_down == 1'd 1)
begin

up_down <= 1'd 0;
counter <= counter + 4'd 1;

end
else if (counter == 4'd 2 && up_down == 1'd 0)
begin

counter <= counter + 4'd 1;
end
else
begin

counter <= 4'd 0;
end

end

assign en = up_down;

endmodule

module chipselect(input logic mclk, input logic ds, output logic csn);

logic [5:0] counter_down = 6'd 0; //counter(we need 12 cycles of low, 1 cycle of high)
logic [5:0] counter_up = 6'd 0;
logic chipselect = 1'd 1; //to control the value of chipselect
logic hold1, hold2, hold3; //to introduce a cycle of delay on chipselect

35

always_ff @ (posedge mclk)
begin

if(ds && counter_up <= 6'd 20 && counter_down == 6'd 0)
begin

chipselect <= 1'd 1;
counter_up <= counter_up + 6'd 1;

end

else if(ds && counter_up == 6'd 21 && counter_down == 6'd 0)
begin

chipselect <= 1'd 0;
counter_down <= counter_down + 6'd 1;
counter_up <= 6'd 0;

end

else if(ds && counter_up == 6'd 0 && counter_down <= 6'd 12)
begin

chipselect <= 1'd 0;
counter_down <= counter_down + 6'd 1;

end

else if(chipselect == 1'd 0 && counter_down == 6'd 13)
begin

counter_down <= 6'd 0;
counter_up <= 6'd 0;
chipselect <= 1'd 1;

end
hold1 <= chipselect;
hold2 <= hold1;
hold3 <= hold2;

end

assign csn = hold3;

endmodule

//controls the D_in signal
module toADC (input logic mclk, input logic ds, input logic cs, output logic din);
//make a shift register to send data to ADC

logic [5:0] shiftreg = 6'b 100010; //initialize shift reg to 0s
logic [5:0] counter = 6'd 0;

always_ff @ (posedge mclk)
begin

if (!cs && ds && counter < 6'd 6)
begin

din <= shiftreg[5];
shiftreg [5:1] <= shiftreg[4:0];
shiftreg [0] <= 1'd 0;
counter <= counter + 6'd 1;

36

end

else if(counter == 6'd 6 && !ds && cs)
begin

din <= din;
shiftreg <= 6'b 100010;
counter <= 6'd 0;

end

else

din <= din;

end

endmodule

//controls the D_out signal
module fromADC (mclk, ds, cs, dout, ready, out);

input logic mclk, ds, cs, dout;
output logic [11:0] out;
//output logic [11:0] ADC_REG_PREV;
output logic ready;
logic [5:0] counter = 6'd 0;

logic [11:0] shiftreg = 12'd 0;

logic load_data = 1'd 1; //check this if we have issues displaying

always_ff @ (posedge mclk)
begin

if (!cs && ds && counter < 6'd 1)
begin

//ADC_REG_PREV[11:0] <= shiftreg[11:0];
counter <= counter + 6'd 1;
ready <= 1'd 0;

end

else if (!cs && ds && counter >= 6'd 1 && counter <= 6'd 12)
//if (!cs && ds && counter <= 6'd 11)
begin

shiftreg = {shiftreg[10:0], dout};
counter <= counter + 6'd 1;
load_data <= 1'd 1;
ready <= 1'd 0;
//ADC_REG_PREV[11:0] <= ADC_REG_PREV[11:0];

end

else if(cs && !ds && load_data)
begin

//counter = 6'd 0;
//out <= shiftreg;
out[11:0] <= shiftreg[11:0];
//counter = 6'd 0;
load_data <= 1'd 0;
ready <= 1'd 0;

37

end

if(counter == 6'd 13)
begin

ready <= 1'd 1;
counter <= 6'd 0;

end
else

ready <= 1'd 0;

end

endmodule
/*
module trackTrig (input logic mclk, input logic[11:0] ADC_REG, input logic[11:0] trig, input logic full, output logic
cur_trig, output logic prev_trig, input logic rising);

logic hold_prev = 1'b0;
logic hold1 = 1'b0;

always_ff @ (posedge mclk)
begin
if(rising && full)
begin

if(ADC_REG >= trig)
begin

cur_trig <= 1'b1;
hold_prev <= 1'b1;

end
else if (ADC_REG < trig)
begin

cur_trig <= 1'b0;
hold_prev <= 1'b0;

end
else
begin

cur_trig <= 1'b0;
hold_prev <= 1'b0;

end

hold1 <= hold_prev;

end

end

assign prev_trig = hold1;

endmodule*/

module trackTrig (input logic mclk, input logic[11:0] ADC_REG, input logic[11:0] trig, input logic full, output logic
cur_trig, output logic prev_trig, input logic rising);

logic hold_prev = 1'b0;
logic hold1 = 1'b0;

38

always_ff @ (posedge mclk)
begin
if(rising && full)
begin

if(ADC_REG >= trig)
begin

cur_trig <= 1'b1;
hold_prev <= 1'b1;

end
else if(ADC_REG<trig)/* added these conditions*/
begin

cur_trig <= 1'b0;
hold_prev <= 1'b0;

end/* added these conditions*/
else
begin

cur_trig <= 1'b0;
hold_prev <= 1'b0;

end

hold1 <= hold_prev;

end
else if(!rising && full)
begin

if(ADC_REG <= trig)
begin

cur_trig <= 1'b1;
hold_prev <= 1'b1;

end
else
begin

cur_trig <= 1'b0;
hold_prev <= 1'b0;

end

hold1 <= hold_prev;

end

end

assign prev_trig = hold1;

endmodule

module sendData (input logic mclk, input logic ready, input logic cur_trig, input logic full, output logic valid, input logic
prev_trig, output logic [3:0] testHex);

initial
begin
testHex=4'd0;
end

always_ff @ (posedge mclk)
begin

39

//if previous trig was 0, curr trig was 1, vga_full was true and ready is true--> set valid to true
if(!prev_trig && cur_trig && full)

valid <=1'd1;
else if(prev_trig && !cur_trig && full) //added here
begin valid <=1'd1;

testHex <= 4'd5;
end
else if(!full && ready && valid)

valid<= 1'd0;
else if(!full && ready && !valid)

valid<= 1'd1;
else

valid<=1'd0;

end

endmodule

module hex7seg (input logic [3:0] in, output logic [0:7] out);

logic [6:0] pre_seg_dis;
always @ (*)
begin

case(in)

4'h1: pre_seg_dis = 7'b1111001;
4'h2: pre_seg_dis = 7'b0100100;
4'h3: pre_seg_dis = 7'b0110000;
4'h4: pre_seg_dis = 7'b0011001;
4'h5: pre_seg_dis = 7'b0010010;
4'h6: pre_seg_dis = 7'b0000010;
4'h7: pre_seg_dis = 7'b1111000;
4'h8: pre_seg_dis = 7'b0000000;
4'h9: pre_seg_dis = 7'b0011000;
4'ha: pre_seg_dis = 7'b0001000;
4'hb: pre_seg_dis = 7'b0000011;
4'hc: pre_seg_dis = 7'b1000110;
4'hd: pre_seg_dis = 7'b0100001;
4'he: pre_seg_dis = 7'b0000110;
4'hf: pre_seg_dis = 7'b0001110;
4'h0: pre_seg_dis = 7'b1000000;

endcase

end

assign out = pre_seg_dis;

endmodule

module hex7edge (input logic in, output logic [0:7] out);

logic [6:0] pre_seg_dis;
always @ (*)
begin

40

case(in)

4'h1: pre_seg_dis = 7'b1001110;

4'h0: pre_seg_dis = 7'b0001110;

endcase

end

assign out = pre_seg_dis;

endmodule

module bin2dec (input logic [11:0] bin_data, output logic [3:0] dec0, output logic [3:0] dec1, output logic [3:0] dec2,
output logic [3:0] dec3, output logic [3:0] dec4, output logic [3:0] dec5);

always @ (*)
begin
dec0 = (bin_data*409600/4096) %10;
dec1 = (bin_data*409600/4096 /10) %10;
dec2 = (bin_data*409600/4096 /100) %10;
dec3 = (bin_data*409600/4096 /1000) %10;
dec4 = (bin_data*409600/4096 /10000) %10;
dec5 = (bin_data*409600/4096 /100000) %10;
end

endmodule

/* ==VGA
Modules===
======== */

module vga_counters(
 input logic clk50, reset,
 output logic [10:0] hcount, // hcount[10:1] is pixel column
 output logic [9:0] vcount, // vcount[9:0] is pixel row
 output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n, VGA_SYNC_n);

 // Parameters for hcount
 parameter HACTIVE = 11'd 1280,
 HFRONT_PORCH = 11'd 32,
 HSYNC = 11'd 192,
 HBACK_PORCH = 11'd 96,
 HTOTAL = HACTIVE + HFRONT_PORCH + HSYNC +
 HBACK_PORCH; // 1600

 // Parameters for vcount

41

 parameter VACTIVE = 10'd 480,
 VFRONT_PORCH = 10'd 10,
 VSYNC = 10'd 2,
 VBACK_PORCH = 10'd 33,
 VTOTAL = VACTIVE + VFRONT_PORCH + VSYNC +
 VBACK_PORCH; // 525

 logic endOfLine;

 always_ff @(posedge clk50 or posedge reset)
 if (reset) hcount <= 0;
 else if (endOfLine) hcount <= 0;
 else hcount <= hcount + 11'd 1;

 assign endOfLine = hcount == HTOTAL - 1;

 logic endOfField;

 always_ff @(posedge clk50 or posedge reset)
 if (reset) vcount <= 0;
 else if (endOfLine)
 if (endOfField) vcount <= 0;
 else vcount <= vcount + 10'd 1;

 assign endOfField = vcount == VTOTAL - 1;

 // Horizontal sync: from 0x520 to 0x5DF (0x57F)
 // 101 0010 0000 to 101 1101 1111
 assign VGA_HS = !((hcount[10:8] == 3'b101) &

 !(hcount[7:5] == 3'b111));
 assign VGA_VS = !(vcount[9:1] == (VACTIVE + VFRONT_PORCH) / 2);

 assign VGA_SYNC_n = 1'b0; // For putting sync on the green signal; unused

 assign VGA_BLANK_n = !(hcount[10] & (hcount[9] | hcount[8])) &

!(vcount[9] | (vcount[8:5] == 4'b1111));

 /* VGA_CLK is 25 MHz
 * __ __ __
 * clk50 __| |__| |__|
 *
 * _____ __
 * hcount[0]__| |_____|
 */
 assign VGA_CLK = hcount[0]; // 25 MHz clock: rising edge sensitive

endmodule

//MOUSE
module mouse(input logic clk, output logic [7:0] shape, input logic [2:0] a_m);

logic [7:0] mse[7:0];

initial begin
mse[0] = 8'b01111111;

42

mse[1] = 8'b00111111;
mse[2] = 8'b00011111;
mse[3] = 8'b00011111;
mse[4] = 8'b00111111;
mse[5] = 8'b01110011;
mse[6] = 8'b11100001;
mse[7] = 8'b11000000;
end

always_ff @(posedge clk) begin
shape <= mse[a_m];
end
endmodule

// +
module plus(input logic clk, output logic [15:0] shape_p, input logic [3:0] a_p);

logic [15:0] mse[15:0];

initial begin
mse[0] = 16'b0000000000000000;
mse[1] = 16'b0000000000000000;
mse[2] = 16'b0000001111000000;
mse[3] = 16'b0000001111000000;
mse[4] = 16'b0000001111000000;
mse[5] = 16'b0000001111000000;
mse[6] = 16'b0011111111111100;
mse[7] = 16'b0011111111111100;
mse[8] = 16'b0011111111111100;
mse[9] = 16'b0011111111111100;
mse[10] =16'b0000001111000000;
mse[11] =16'b0000001111000000;
mse[12] =16'b0000001111000000;
mse[13] =16'b0000001111000000;
mse[14] =16'b0000000000000000;
mse[15] =16'b0000000000000000;
end

always_ff @(posedge clk) begin
shape_p <= mse[a_p];
end
endmodule

// -
module minus(input logic clk, output logic [15:0] shape_mi, input logic [3:0] a_mi);

logic [15:0] mse[15:0];

initial begin
mse[0] = 16'b0000000000000000;
mse[1] = 16'b0000000000000000;
mse[2] = 16'b0000000000000000;
mse[3] = 16'b0000000000000000;
mse[4] = 16'b0000000000000000;
mse[5] = 16'b0000000000000000;

43

mse[6] = 16'b0011111111111100;
mse[7] = 16'b0011111111111100;
mse[8] = 16'b0011111111111100;
mse[9] = 16'b0011111111111100;
mse[10] =16'b0000000000000000;
mse[11] =16'b0000000000000000;
mse[12] =16'b0000000000000000;
mse[13] =16'b0000000000000000;
mse[14] =16'b0000000000000000;
mse[15] =16'b0000000000000000;
end

always_ff @(posedge clk) begin
shape_mi <= mse[a_mi];
end
endmodule

// T
module T(input logic clk, output logic [15:0] shape_t, input logic [3:0] a_t);

logic [15:0] mse[15:0];

initial begin
mse[0] = 16'b1111111111111111;
mse[1] = 16'b1111111111111111;
mse[2] = 16'b1111111111111111;
mse[3] = 16'b1111111111111111;
mse[4] = 16'b0000001111000000;
mse[5] = 16'b0000001111000000;

mse[6] = 16'b0000001111000000;
mse[7] = 16'b0000001111000000;
mse[8] = 16'b0000001111000000;
mse[9] = 16'b0000001111000000;
mse[10] =16'b0000001111000000;
mse[11] =16'b0000001111000000;
mse[12] =16'b0000001111000000;
mse[13] =16'b0000001111000000;
mse[14] =16'b0000001111000000;
mse[15] =16'b0000001111000000;
end

always_ff @(posedge clk) begin
shape_t <= mse[a_t];
end
endmodule

// R
module R(input logic clk, output logic [15:0] shape_r, input logic [3:0] a_r);
//assign a_m = vcount - posY;
logic [15:0] mse[15:0];

initial begin
mse[0] = 16'b0011111111111111;
mse[1] = 16'b0011111111111111;
mse[2] = 16'b0011110000001111;
mse[3] = 16'b0011110000001111;

44

mse[4] = 16'b0011110000001111;
mse[5] = 16'b0011110000001111;
mse[6] = 16'b0011110000001111;
mse[7] = 16'b0011110000001111;
mse[8] = 16'b0011111111111111;
mse[9] = 16'b0011111111111111;
mse[10] =16'b0000000111101111;
mse[11] =16'b0000001111001111;
mse[12] =16'b0000011110001111;
mse[13] =16'b0000111100001111;
mse[14] =16'b0001111000001111;
mse[15] =16'b0011111000001111;
end

always_ff @(posedge clk) begin
shape_r <= mse[a_r];
end
endmodule

// 0
module zero(input logic clk, output logic [15:0] shape_o, input logic [3:0] a_o);

logic [15:0] mse[15:0];

initial begin
mse[0] = 16'b1111111111111111;
mse[1] = 16'b1111111111111111;
mse[2] = 16'b1111000000001111;
mse[3] = 16'b1111000000001111;
mse[4] = 16'b1111000000001111;
mse[5] = 16'b1111000000001111;
mse[6] = 16'b1111000000001111;
mse[7] = 16'b1111000000001111;
mse[8] = 16'b1111000000001111;
mse[9] = 16'b1111000000001111;
mse[10] =16'b1111000000001111;
mse[11] =16'b1111000000001111;
mse[12] =16'b1111000000001111;
mse[13] =16'b1111000000001111;
mse[14] =16'b1111111111111111;
mse[15] =16'b1111111111111111;
end

always_ff @(posedge clk) begin
shape_o <= mse[a_o];
end
endmodule

// 1
module one(input logic clk, output logic [15:0] shape_one, input logic [3:0] a_one);

logic [15:0] mse[15:0];

initial begin
mse[0] = 16'b1111111100000000;
mse[1] = 16'b1111011110000000;

45

mse[2] = 16'b1111001111000000;
mse[3] = 16'b1111000111100000;
mse[4] = 16'b1111000011110000;
mse[5] = 16'b1111000001111000;
mse[6] = 16'b1111000000000000;
mse[7] = 16'b1111000000000000;
mse[8] = 16'b1111000000000000;
mse[9] = 16'b1111000000000000;
mse[10] =16'b1111000000000000;
mse[11] =16'b1111000000000000;
mse[12] =16'b1111000000000000;
mse[13] =16'b1111000000000000;
mse[14] =16'b1111000000000000;
mse[15] =16'b1111000000000000;
end

always_ff @(posedge clk) begin
shape_one <= mse[a_one];
end
endmodule

// 2
module two(input logic clk, output logic [15:0] shape_two, input logic [3:0] a_two);

logic [15:0] mse[15:0];

initial begin
mse[0] = 16'b1111111111111111;
mse[1] = 16'b1111000111111111;
mse[2] = 16'b1111000001111111;
mse[3] = 16'b1111000000111111;
mse[4] = 16'b1111000000011111;
mse[5] = 16'b1111000000001111;
mse[6] = 16'b1111000000000000;
mse[7] = 16'b1111111111111111;
mse[8] = 16'b1111111111111111;
mse[9] = 16'b0000000000001111;
mse[10] =16'b0000000000001111;
mse[11] =16'b0000000000001111;
mse[12] =16'b1111111111111111;
mse[13] =16'b1111111111111111;
mse[14] =16'b1111111111111111;
mse[15] =16'b1111111111111111;
end

always_ff @(posedge clk) begin
shape_two <= mse[a_two];
end
endmodule

// 3
module th(input logic clk, output logic [15:0] shape_th, input logic [3:0] a_th);

logic [15:0] mse[15:0];

46

initial begin
mse[0] = 16'b1111111111111111;
mse[1] = 16'b1111111111111111;
mse[2] = 16'b1111111111111111;
mse[3] = 16'b1111000000000000;
mse[4] = 16'b1111000000000000;
mse[5] = 16'b1111000000000000;
mse[6] = 16'b1111000000000000;
mse[7] = 16'b1111111111111111;
mse[8] = 16'b1111111111111111;
mse[9] = 16'b1111111111111111;
mse[10] =16'b1111000000000000;
mse[11] =16'b1111000000000000;
mse[12] =16'b1111000000000000;
mse[13] =16'b1111111111111111;
mse[14] =16'b1111111111111111;
mse[15] =16'b1111111111111111;
end

always_ff @(posedge clk) begin
shape_th <= mse[a_th];
end
endmodule

// 16 X 8 synchronous RAM with old data read-during-write behavior
module memory(input logic clk,

 input logic [9:0] a,
 input logic [8:0] din,
 input logic we,
 output logic [15:0] dout);

//we have 1280 pixels, so 1280 digits coming in each of 16 bits

 logic [15:0] mem [639:0];

 //integer j;
 //integer flag;
 //initial begin

 //for(j = 0; j < 639; j = j+1)

 //mem[j] = 16'd180;

//end

//end

 always_ff @(posedge clk) begin
 if (we) mem[a] <= din;
 dout <= mem[a];
 end

endmodule

47

13.3. soc_system_top.sv (Setting up pins for ADC, VGA, and HEX Displays)

// ==
// Copyright (c) 2013 by Terasic Technologies Inc.
// ==
//
// Modified 2019 by Stephen A. Edwards
//
// Permission:
//
// Terasic grants permission to use and modify this code for use in
// synthesis for all Terasic Development Boards and Altera
// Development Kits made by Terasic. Other use of this code,
// including the selling ,duplication, or modification of any
// portion is strictly prohibited.
//
// Disclaimer:
//
// This VHDL/Verilog or C/C++ source code is intended as a design
// reference which illustrates how these types of functions can be
// implemented. It is the user's responsibility to verify their
// design for consistency and functionality through the use of
// formal verification methods. Terasic provides no warranty
// regarding the use or functionality of this code.
//
// ===
//
// Terasic Technologies Inc

// 9F., No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, 30070. Taiwan
//
//
// web: http://www.terasic.com/
// email: support@terasic.com
module soc_system_top(

 ///////// ADC /////////
 inout ADC_CS_N,
 output ADC_DIN,
 input ADC_DOUT,
 output ADC_SCLK,

 ///////// AUD /////////
 input AUD_ADCDAT,
 inout AUD_ADCLRCK,
 inout AUD_BCLK,
 output AUD_DACDAT,
 inout AUD_DACLRCK,
 output AUD_XCK,

 ///////// CLOCK2 /////////
 input CLOCK2_50,

 ///////// CLOCK3 /////////
 input CLOCK3_50,

48

 ///////// CLOCK4 /////////
 input CLOCK4_50,

 ///////// CLOCK /////////
 input CLOCK_50,

 ///////// DRAM /////////
 output [12:0] DRAM_ADDR,
 output [1:0] DRAM_BA,
 output DRAM_CAS_N,
 output DRAM_CKE,
 output DRAM_CLK,
 output DRAM_CS_N,
 inout [15:0] DRAM_DQ,
 output DRAM_LDQM,
 output DRAM_RAS_N,
 output DRAM_UDQM,
 output DRAM_WE_N,

 ///////// FAN /////////
 output FAN_CTRL,

 ///////// FPGA /////////
 output FPGA_I2C_SCLK,
 inout FPGA_I2C_SDAT,

 ///////// GPIO /////////
 inout [35:0] GPIO_0,
 inout [35:0] GPIO_1,

 ///////// HEX0 /////////
 output [6:0] HEX0,

 ///////// HEX1 /////////
 output [6:0] HEX1,

 ///////// HEX2 /////////
 output [6:0] HEX2,

 ///////// HEX3 /////////
 output [6:0] HEX3,

 ///////// HEX4 /////////
 output [6:0] HEX4,

 ///////// HEX5 /////////
 output [6:0] HEX5,

 ///////// HPS /////////
 inout HPS_CONV_USB_N,
 output [14:0] HPS_DDR3_ADDR,
 output [2:0] HPS_DDR3_BA,
 output HPS_DDR3_CAS_N,
 output HPS_DDR3_CKE,
 output HPS_DDR3_CK_N,
 output HPS_DDR3_CK_P,

49

 output HPS_DDR3_CS_N,
 output [3:0] HPS_DDR3_DM,
 inout [31:0] HPS_DDR3_DQ,
 inout [3:0] HPS_DDR3_DQS_N,
 inout [3:0] HPS_DDR3_DQS_P,
 output HPS_DDR3_ODT,
 output HPS_DDR3_RAS_N,
 output HPS_DDR3_RESET_N,
 input HPS_DDR3_RZQ,
 output HPS_DDR3_WE_N,
 output HPS_ENET_GTX_CLK,
 inout HPS_ENET_INT_N,
 output HPS_ENET_MDC,
 inout HPS_ENET_MDIO,
 input HPS_ENET_RX_CLK,
 input [3:0] HPS_ENET_RX_DATA,
 input HPS_ENET_RX_DV,
 output [3:0] HPS_ENET_TX_DATA,
 output HPS_ENET_TX_EN,
 inout HPS_GSENSOR_INT,
 inout HPS_I2C1_SCLK,
 inout HPS_I2C1_SDAT,
 inout HPS_I2C2_SCLK,
 inout HPS_I2C2_SDAT,
 inout HPS_I2C_CONTROL,
 inout HPS_KEY,
 inout HPS_LED,
 inout HPS_LTC_GPIO,
 output HPS_SD_CLK,
 inout HPS_SD_CMD,
 inout [3:0] HPS_SD_DATA,
 output HPS_SPIM_CLK,
 input HPS_SPIM_MISO,
 output HPS_SPIM_MOSI,
 inout HPS_SPIM_SS,
 input HPS_UART_RX,
 output HPS_UART_TX,
 input HPS_USB_CLKOUT,
 inout [7:0] HPS_USB_DATA,
 input HPS_USB_DIR,
 input HPS_USB_NXT,
 output HPS_USB_STP,

 ///////// IRDA /////////
 input IRDA_RXD,
 output IRDA_TXD,

 ///////// KEY /////////
 input [3:0] KEY,

 ///////// LEDR /////////
 output [9:0] LEDR,

 ///////// PS2 /////////
 inout PS2_CLK,
 inout PS2_CLK2,
 inout PS2_DAT,

50

 inout PS2_DAT2,

 ///////// SW /////////
 input [9:0] SW,

 ///////// TD /////////
 input TD_CLK27,
 input [7:0] TD_DATA,
 input TD_HS,
 output TD_RESET_N,
 input TD_VS,

 ///////// VGA /////////
 output [7:0] VGA_B,
 output VGA_BLANK_N,
 output VGA_CLK,
 output [7:0] VGA_G,
 output VGA_HS,
 output [7:0] VGA_R,
 output VGA_SYNC_N,
 output VGA_VS
);

 soc_system soc_system0(
 .clk_clk (CLOCK_50),
 .reset_reset_n (1'b1),

 .hps_ddr3_mem_a (HPS_DDR3_ADDR),
 .hps_ddr3_mem_ba (HPS_DDR3_BA),
 .hps_ddr3_mem_ck (HPS_DDR3_CK_P),
 .hps_ddr3_mem_ck_n (HPS_DDR3_CK_N),
 .hps_ddr3_mem_cke (HPS_DDR3_CKE),
 .hps_ddr3_mem_cs_n (HPS_DDR3_CS_N),
 .hps_ddr3_mem_ras_n (HPS_DDR3_RAS_N),
 .hps_ddr3_mem_cas_n (HPS_DDR3_CAS_N),
 .hps_ddr3_mem_we_n (HPS_DDR3_WE_N),
 .hps_ddr3_mem_reset_n (HPS_DDR3_RESET_N),
 .hps_ddr3_mem_dq (HPS_DDR3_DQ),
 .hps_ddr3_mem_dqs (HPS_DDR3_DQS_P),
 .hps_ddr3_mem_dqs_n (HPS_DDR3_DQS_N),
 .hps_ddr3_mem_odt (HPS_DDR3_ODT),
 .hps_ddr3_mem_dm (HPS_DDR3_DM),
 .hps_ddr3_oct_rzqin (HPS_DDR3_RZQ),

 .hps_hps_io_emac1_inst_TX_CLK (HPS_ENET_GTX_CLK),
 .hps_hps_io_emac1_inst_TXD0 (HPS_ENET_TX_DATA[0]),
 .hps_hps_io_emac1_inst_TXD1 (HPS_ENET_TX_DATA[1]),
 .hps_hps_io_emac1_inst_TXD2 (HPS_ENET_TX_DATA[2]),
 .hps_hps_io_emac1_inst_TXD3 (HPS_ENET_TX_DATA[3]),
 .hps_hps_io_emac1_inst_RXD0 (HPS_ENET_RX_DATA[0]),
 .hps_hps_io_emac1_inst_MDIO (HPS_ENET_MDIO),
 .hps_hps_io_emac1_inst_MDC (HPS_ENET_MDC),
 .hps_hps_io_emac1_inst_RX_CTL (HPS_ENET_RX_DV),
 .hps_hps_io_emac1_inst_TX_CTL (HPS_ENET_TX_EN),
 .hps_hps_io_emac1_inst_RX_CLK (HPS_ENET_RX_CLK),
 .hps_hps_io_emac1_inst_RXD1 (HPS_ENET_RX_DATA[1]),

51

 .hps_hps_io_emac1_inst_RXD2 (HPS_ENET_RX_DATA[2]),
 .hps_hps_io_emac1_inst_RXD3 (HPS_ENET_RX_DATA[3]),

 .hps_hps_io_sdio_inst_CMD (HPS_SD_CMD),
 .hps_hps_io_sdio_inst_D0 (HPS_SD_DATA[0]),
 .hps_hps_io_sdio_inst_D1 (HPS_SD_DATA[1]),
 .hps_hps_io_sdio_inst_CLK (HPS_SD_CLK),
 .hps_hps_io_sdio_inst_D2 (HPS_SD_DATA[2]),
 .hps_hps_io_sdio_inst_D3 (HPS_SD_DATA[3]),

 .hps_hps_io_usb1_inst_D0 (HPS_USB_DATA[0]),
 .hps_hps_io_usb1_inst_D1 (HPS_USB_DATA[1]),
 .hps_hps_io_usb1_inst_D2 (HPS_USB_DATA[2]),
 .hps_hps_io_usb1_inst_D3 (HPS_USB_DATA[3]),
 .hps_hps_io_usb1_inst_D4 (HPS_USB_DATA[4]),
 .hps_hps_io_usb1_inst_D5 (HPS_USB_DATA[5]),
 .hps_hps_io_usb1_inst_D6 (HPS_USB_DATA[6]),
 .hps_hps_io_usb1_inst_D7 (HPS_USB_DATA[7]),
 .hps_hps_io_usb1_inst_CLK (HPS_USB_CLKOUT),
 .hps_hps_io_usb1_inst_STP (HPS_USB_STP),
 .hps_hps_io_usb1_inst_DIR (HPS_USB_DIR),
 .hps_hps_io_usb1_inst_NXT (HPS_USB_NXT),

 .hps_hps_io_spim1_inst_CLK (HPS_SPIM_CLK),
 .hps_hps_io_spim1_inst_MOSI (HPS_SPIM_MOSI),
 .hps_hps_io_spim1_inst_MISO (HPS_SPIM_MISO),
 .hps_hps_io_spim1_inst_SS0 (HPS_SPIM_SS),

 .hps_hps_io_uart0_inst_RX (HPS_UART_RX),
 .hps_hps_io_uart0_inst_TX (HPS_UART_TX),

 .hps_hps_io_i2c0_inst_SDA (HPS_I2C1_SDAT),
 .hps_hps_io_i2c0_inst_SCL (HPS_I2C1_SCLK),

 .hps_hps_io_i2c1_inst_SDA (HPS_I2C2_SDAT),
 .hps_hps_io_i2c1_inst_SCL (HPS_I2C2_SCLK),

 .hps_hps_io_gpio_inst_GPIO09 (HPS_CONV_USB_N),
 .hps_hps_io_gpio_inst_GPIO35 (HPS_ENET_INT_N),
 .hps_hps_io_gpio_inst_GPIO40 (HPS_LTC_GPIO),

 .hps_hps_io_gpio_inst_GPIO48 (HPS_I2C_CONTROL),
 .hps_hps_io_gpio_inst_GPIO53 (HPS_LED),
 .hps_hps_io_gpio_inst_GPIO54 (HPS_KEY),
 .hps_hps_io_gpio_inst_GPIO61 (HPS_GSENSOR_INT),

 .vga_r (VGA_R),
 .vga_g (VGA_G),
 .vga_b (VGA_B),
 .vga_clk (VGA_CLK),
 .vga_hs (VGA_HS),
 .vga_vs (VGA_VS),
 .vga_blank_n (VGA_BLANK_N),
 .vga_sync_n (VGA_SYNC_N),

 .adc_cs (ADC_CS_N),
 .adc_sclk (ADC_SCLK),

52

 .adc_din (ADC_DIN),
 .adc_dout (ADC_DOUT),

 .hex_h0 (HEX0),
 .hex_h1 (HEX1),
 .hex_h2 (HEX2),
 .hex_h3 (HEX3),
 .hex_h4 (HEX4),
 .hex_h5 (HEX5)

);

 // The following quiet the "no driver" warnings for output
 // pins and should be removed if you use any of these peripherals
/*
 assign ADC_CS_N = SW[1] ? SW[0] : 1'bZ;
 assign ADC_DIN = SW[0];
 assign ADC_SCLK = SW[0];
*/
 assign AUD_ADCLRCK = SW[1] ? SW[0] : 1'bZ;
 assign AUD_BCLK = SW[1] ? SW[0] : 1'bZ;
 assign AUD_DACDAT = SW[0];
 assign AUD_DACLRCK = SW[1] ? SW[0] : 1'bZ;
 assign AUD_XCK = SW[0];

 assign DRAM_ADDR = { 13{ SW[0] } };
 assign DRAM_BA = { 2{ SW[0] } };
 assign DRAM_DQ = SW[1] ? { 16{ SW[0] } } : 16'bZ;
 assign {DRAM_CAS_N, DRAM_CKE, DRAM_CLK, DRAM_CS_N,

 DRAM_LDQM, DRAM_RAS_N, DRAM_UDQM, DRAM_WE_N} = { 8{SW[0]} };

 assign FAN_CTRL = SW[0];

 assign FPGA_I2C_SCLK = SW[0];
 assign FPGA_I2C_SDAT = SW[1] ? SW[0] : 1'bZ;

 assign GPIO_0 = SW[1] ? { 36{ SW[0] } } : 36'bZ;
 assign GPIO_1 = SW[1] ? { 36{ SW[0] } } : 36'bZ;
/*
 assign HEX0 = { 7{ SW[1] } };
 assign HEX1 = { 7{ SW[2] } };
 assign HEX2 = { 7{ SW[3] } };
 assign HEX3 = { 7{ SW[4] } };
 assign HEX4 = { 7{ SW[5] } };
 assign HEX5 = { 7{ SW[6] } };
*/
 assign IRDA_TXD = SW[0];

 assign LEDR = { 10{SW[7]} };

 assign PS2_CLK = SW[1] ? SW[0] : 1'bZ;
 assign PS2_CLK2 = SW[1] ? SW[0] : 1'bZ;
 assign PS2_DAT = SW[1] ? SW[0] : 1'bZ;
 assign PS2_DAT2 = SW[1] ? SW[0] : 1'bZ;

 assign TD_RESET_N = SW[0];

53

endmodule

13.4. mouse.c (Software to run the mouse and communicate with hardware)

/*
 * Userspace program that communicates with the vga_ball device driver
 * through ioctls
 *
 * Stephen A. Edwards
 * Columbia University
 */

#include <stdio.h>
#include "vga_ball.h"
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>

#include <stdlib.h>
#include <arpa/inet.h>
#include "usbmouse.h"

/* References on libusb 1.0 and the USB HID/mouse protocol
 * https://nxmnpg.lemoda.net/3/libusb_interrupt_transfer
 * http://libusb.org
 * http://www.dreamincode.net/forums/topic/148707-introduction-to-using-libusb-10/
 * http://www.usb.org/developers/devclass_docs/HID1_11.pdf
 */

int vga_ball_fd;

// for mouse
struct libusb_device_handle *mouse;
uint8_t endpoint_address;

/* Read and print the background color
void print_background_color() {
 vga_ball_arg_t vla;

 if (ioctl(vga_ball_fd, VGA_BALL_READ_BACKGROUND, &vla)) {
 perror("ioctl(VGA_BALL_READ_BACKGROUND) failed");
 return;
 }
 printf("%02x %02x %02x\n",

 vla.background.red, vla.background.green, vla.background.blue);
}

/* Set the background color
void set_background_color(const vga_ball_color_t *c,unsigned short xcoord, unsigned short ycoord)
{
 vga_ball_arg_t vla;

54

 vla.x = xcoord;
 vla.y = ycoord;
 vla.background = *c;
 if (ioctl(vga_ball_fd, VGA_BALL_WRITE_BACKGROUND, &vla)) {
 perror("ioctl(VGA_BALL_SET_BACKGROUND) failed");
 return;
 }
}*/
void print_coordinate_info() {
 vga_ball_arg_t vla;

if (ioctl(vga_ball_fd, VGA_BALL_READ_COORD, &vla)) {
perror("ioctl(VGA_BALl_READ_COORD) failed");
return;

}
//printf("(%d, %d)", vla.x, vla.y);

 printf("\n");
}

//Write the coordinates to thc: In function 'main':
//mouse.c:166:11: error: 'mouse display
void write_coordinates(vga_ball_arg_t* c)
{

vga_ball_arg_t vla;
vla = *c;
//printf("HERE(%d, %d)", vla.x, vla.y);
printf("HERE(%d, %d, %d,%d)", vla.x, vla.y,vla.r,vla.t);
if (ioctl(vga_ball_fd, VGA_BALL_WRITE_COORD, &vla)) {

perror("ioctl(VGA_BALL_WRITE_COORD) failed");
return;

}
}

int main()
{

 vga_ball_arg_t vla;
 //-----------------------MOUSE_START-------------------------
 // struct sockaddr_in serv_addr;
 int px = 320;
 int py = 240;
 int numx, numy;
 int modifierss = 0;
 struct usb_mouse_packet packet;
 int transferred;

 //button_1 is horizontal_sweep
 int pos_button_1_x = 500;
 int pos_button_1_y = 350;

 //button_2 is trigger_voltage
 int pos_button_2_x = 500;
 int pos_button_2_y = 425;

 int inputx = 320;
 int inputy = 240;
 int inputclick = 0;

55

 int x_distance = 50;
 int y_distance = 75;
 int x_width = 16;
 int y_width = 16;

 //save trigger_voltage and horizontal sweep value
 int trigger_voltage = 2; // default 2, range(1.0 to 3.0)
 int sweep_value = 2; // default us 1, range is (1~100)
 int trigger_slope = 1;
 //the logic is drop all data except every sweep_value sample.
 char str[50] = "without mouse click";

 static const char filename[] = "/dev/vga_ball";
 // char keystate[12];

 /* Open the mouse */
 if ((mouse = openmouse(&endpoint_address)) == NULL) {
 fprintf(stderr, "Did not find a mouse\n");
 exit(1);
 }

 if ((vga_ball_fd = open(filename, O_RDWR)) == -1) {
 fprintf(stderr, "could not open %s\n", filename);
 return -1;
 }
 for (;;)
 {
 libusb_interrupt_transfer(mouse, endpoint_address,
 (unsigned char *) &packet, sizeof(packet),
 &transferred, 0);
 //c: In function 'main':
//mouse.c:166:11: error: 'mous // printf("%d\n", flg1);

 if (transferred == sizeof(packet)) {
 if (packet.pos_x > 0x88) {
 numx = -(0xFF - packet.pos_x + 1);
 }
 else { numx = packet.pos_x;}

 if (packet.pos_y > 0x88) {
 numy = -(0xFF - packet.pos_y + 1);
 }
 else { numy = packet.pos_y;}

 if (px < 1) { px = 1;}
 else if (px > 0 && px < 640) { px = px + numx; }
 else if (px > 639) { px = 639;}
 else {px = 320;}

 if (py < 1) { py = 1;}
 else if (py > 0 && py < 480) { py = py + numy; }
 else if (py > 479) { py = 479;}
 else {py = 240;}

 inputx = px;
 inputy = py;

56

 inputclick = packet.modifiers;
 modifierss = packet.modifiers;

 if (packet.modifiers == 1){
// printf("flag1");
 if (pos_button_1_y<inputy && inputy<(pos_button_1_y + x_width)){
// printf("flag2");
 if (pos_button_1_x<inputx && inputx<(pos_button_1_x + x_width) && trigger_voltage > 0){
// printf("flag3");
 trigger_voltage = trigger_voltage - 1;
 str[50] = "click add trigger_voltage";}
 else if ((pos_button_1_x + x_distance)<inputx && inputx<(pos_button_1_x + (x_distance+x_width)) &&
trigger_voltage < 3){
 trigger_voltage = trigger_voltage + 1;
 str[50] = "click add trigger_voltage";}
 // else {continue;}
 }
 else if ((pos_button_1_y+y_distance)<inputy && inputy<(pos_button_1_y+(y_distance+y_width))){
 if (pos_button_1_x<inputx && inputx<(pos_button_1_x + x_width)){
 // sweep_value = sweep_value *2; str = "click button sweep_value x2";}
 trigger_slope = 0;
 str[50] = "click button trigger_slope minus";}
 else if ((pos_button_1_x + x_distance)<inputx &&
 inputx<(pos_button_1_x + (x_distance+x_width))){
 // sweep_value = sweep_value /2; str = "click button sweep_value /2";}
 trigger_slope = 1;
 str[50] = "click button trigger_slope pos";}
 // else {continue;}
 }
 printf("trigger_voltage: %d, trigger_slope: %d, the button state: %s", trigger_voltage,trigger_slope,str);
 }

//ADDING R and t
vla.r =trigger_slope;
vla.t = trigger_voltage;

 vla.x = px;
 vla.y = py;
 printf(" position of x, y are: %d %d; left click is %d\n",px,py,modifierss);
 write_coordinates(&vla);
 //usleep(400000);
 }
 }
}
 //-----------------------mouse_END------------------------

/*
 int flag = 0;
 int flag2 =0;
 int a =0;
 // int i;
 static const char filename[] = "/dev/vga_ball";*/

 //static const vga_ball_color_t colors[] = {
 // { 0xff, 0x00, 0x00 }, /* Red */
 // { 0x00, 0xff, 0x00 }, /* Green */
 // { 0x00, 0x00, 0xff }, /* Blue */
 // { 0xff, 0xff, 0x00 }, /* Yellow */
 // { 0x00, 0xff, 0xff }, /* Cyan */

57

 // { 0xff, 0x00, 0xff }, /* Magenta */
 // { 0x80, 0x80, 0x80 }, /* Gray */
 // { 0x00, 0x00, 0x00 }, /* Black */
 //{ 0xff, 0xff, 0xff } /* White */
 //};
/*
vla.x = px;
 vla.y = py;
define COLORS 9

 printf("VGA ball Userspace program started\n");

 if ((vga_ball_fd = open(filename, O_RDWR)) == -1) {
 fprintf(stderr, "could not open %s\n", filename);
 return -1;
 }

 printf("initial state: ");
 // print_background_color();
 print_coordinate_info();
 write_coordinates(&vla);
 printf("initial state: ");
 // print_background_color();
 print_coordinate_info();

 while(1) {
 // set_background_color(&colors[i % COLORS],600,200);
 //print_background_color();

if (flag ==0){
vla.x = vla.x + 60;
}

/*if (flag2==0){
vla.y = vla.y+ 20;
}
else
{
vla.y = vla.y -20;
}

if(vla.x > 1250)
{
vla.x =30;
}

/*
if(vla.y > 465)
{
flag2 = 1;
}
if(vla.y <16)
{
flag2 = 0;
}

58

//vla.x= 180;
vla.y= 180;

//printf("XandY(%d, %d)", vla.x, vla.y);

 print_coordinate_info();
 write_coordinates(&vla);

a =a+1;
printf("a:%d",a);

 usleep(400000);

//vla.x= 120;
vla.y= 120;

//printf("XandY(%d, %d)", vla.x, vla.y);

 print_coordinate_info();
 write_coordinates(&vla);

usleep(400000);
a=a+1;
printf("a:%d",a);

 }

 printf("VGA BALL Userspace program terminating\n");
 return 0;
}*/

13.5. vga_ball.h (Header file for the mouse)

#ifndef _VGA_BALL_H
#define _VGA_BALL_H

#include <linux/ioctl.h>

/*typedef struct {

unsigned char red, green, blue;
} vga_ball_color_t;
 */

/*typedef struct {

 vga_ball_color_t background;
} vga_ball_arg_t;

typedef struct {
unsigned short x, y;

} vga_ball_arg_t;*/

typedef struct {
 unsigned short x, y, r,t;
 //vga_ball_color_t background;
} vga_ball_arg_t;

#define VGA_BALL_MAGIC 'q'

59

/* ioctls and their arguments */
//#define VGA_BALL_WRITE_BACKGROUND _IOW(VGA_BALL_MAGIC, 1, vga_ball_arg_t *)
//#define VGA_BALL_READ_BACKGROUND _IOR(VGA_BALL_MAGIC, 2, vga_ball_arg_t *)
#define VGA_BALL_WRITE_COORD _IOW('q', 1, vga_ball_arg_t *)
#define VGA_BALL_READ_COORD _IOR('q', 2, vga_ball_arg_t *)

#endif

60

