
Wavetable Synth

MIDI
WavetableSynthe

Evan Ziebart, Lancelot Wathieu, Doga Ozesmi, Varun Varahabhotla

Advisor: John Hui

Overview

Wavetable Synthesis

● A sound wave signature is stored in memory

● Loop through this wave to make a sound

Different Notes

● Suppose a wave is sampled at 440 Hz and stored

● To sample at 880 Hz, skip every other address

● 1320 Hz = every third

MIDI Instruments

● Send status of key press and release

Our Design

● Send MIDI packets over USB to software synth program

● Synth converts MIDI signal data into calls to a hardware driver

● The driver accepts configuration of pitches (up to 10 notes)

● Each note requests samples from sampler

● Sampler can take samples from 2 wavetables and combine them with different

coefficients

● The current samples can be configured from the software program

● The samples from all the 10 notes are combined and sent via interface to audio codec

Synth Software

Software: MIDI Decoder

● The MIDI decoder program is responsible for taking the MIDI Protocol messages utilizing

the Libusb software library and translating the instructions into logic output:
○ MIDI Packets are 64 bytes
○ note, attack velocity, modulation

● Wave tales generated through Matlab and conversion script in python for any .wav files

which normalizes the audio format..
○ 48kHz
○ 16bit

Matlab Generated
Audio Waves
sine_wave
pulse_wave
saw_wave
triangle_wave

Hardware

Python Audio Waves
Converter
Use existing .wav files and
convert to 48kHz, 16bit
audio

MIDI_SW_Driver
Libusb Input MIDI Data
send_note
send_wave
start_wave

MIDI Input Device
Keyboard Device which
sends in MIDI Commands

MIDI Driver
Setup Memory Mapped IO
Write Data to buff

Synth Hardware

Wave Table 0

Wave Table 1

Wave Table 2

AUDIO CODEC

NOTES

DRIVER

Note Data: Note, Octave, Velocity

Data from driver, destination note
controlled by top level module

Wave Sample

Counters

ADSR enveloping

● Attack

● Decay

● Synthesis

● Release

Wave Tables
2 wavetables for reading

1 wavetable for writing

Swap these around whenever a different wave is loaded

Wave Table 0

Wave Table 1

Wave Table 2

Wave 0

Wave 1

Wave Tables
2 wavetables for reading

1 wavetable for writing

Swap these around whenever a different wave is loaded

Wave Table 0

Wave Table 1

Wave Table 216 bits * 48,000 samples * 3 waves =

288kB used

Wave 0

Wave 1

Wave Table 0

Wave Table 1

Wave Table 2

AUDIO CODEC

NOTES

DRIVER

Performance Constraints

Time to write from memory to wavetables in BRAM is negligible

Longest portion of hardware is taken by the arbiter

Still responds to Codec requests about ~10 times faster than necessary

What works:

Testbenches for each individual module

Testbenches for each major module (wavetables, note_top)

Software for interpreting MIDI signals

Software driver for the synth hardware

Interfacing with the Audio Codec

What doesn’t:

When they all come together

