

CSEE 4840 Embedded System Project Design

Accelerating VGG16 Network on FPGA

Wenqi Jiang(wj2285)

Manqi Yang(my2577)

Ke Xu(kx2141)

Xingyu Hou(xh2371)

1 Introduction

Convolutional Neural Networks (CNN) are widely used in Computer Vision tasks such as Image

Classification, Object Detection and Semantic Segmentation. The amount of processing required

by CNNs leads to an increasing need on dedicated hardwares. FPGAs, due to its programmable

property and hardware acceleration capacity, can serve as the intermediate product accelerating

CNNs between General Purpose Graphics Processing Unit (GPGPU) and Application-specific

Integrated Circuit (ASIC).

In this project,we will accelerate VGG16 CNN on our FPGA.

VGG16 is a CNN model that achieve 92.7% top-5 test accuracy.Th basic structure of VGG16 is

shown below.

In the structure,we have four different types of layers as shown above.Over 90% of the

computation is done in convolution layer.So the crucial part of acceleration is to build hardware

that do convolution computation effieciently.

In this project, we will implement row stationary dataflow method(which we will talk in hardware

part later) to accelerate VGG16 network on DE1-SOC board.This project involves both software

and hardware design.

2 Implementation

The basic floorplan of the whole system structure is shown below.In our project,most of CNN

computation work will be done in hardware.Software will control the dataflow between external

SDRAM and FPGA.

2.1 Software

In this project,we need to use software to load weight and input feature from DRAM to

FPGA.Since the throughput of the system is extremely large,we need to use DMA method to load

data directly from DRAM to FPGA without transferring data to HPS.To achieve this goal,we need

to connect our FPGA fabric to FPGA to HPS SDRAM Interface using AXI bus or Avalon-MM

bus. Then,we could use MPU to control the SDRAM Controller subsystem to transfer data

between FPGA and DRAM depending on the signal back from FPGA.

2.2 Hardware

2.2.1 Global Buffer

Since the I/O throughput of data is very large in CNN computation,we need to set up a global

buffer to save data from/to the external DRAM to decrease the frequency of communication

between DRAM and FPGA.Global buffer would be made of Block ram on the FPGA board.The

typical size of global buffer should be 128KB for CNN computation.Since we have 4450Kbits

embedded memory in the FPGA,it’s enough for us to configure the global buffer.

2.2.2 I/O FIFO

For hardware part,we need FIFO to control data communication between global buffer,PE array

and external DRAM.In this design,data width of the FIFO should be 16bits since data and weight

we use would be 16bits fixed point number.However,for one FIFO,data transfer speed is limited

by the clock cycle and data width.To solve this problem,we will try to use multiple FIFOs to make

sure we have enough throughput for data loading into the PE array.

2.2.3 PE ARRAY

PE(Processing Element) is the fundamental unit that do convolution computation.Its structure is

shown below.

PE is made of register file,MAC(Multiplication and Accumulation unit)and FIFO.For every MAC

operation,FIFO load data to input from register file.After calculation of a partial sum,the output of

MAC will send back to RF through FIFO.By using this method,we could calculate multiple partial

sum and send back to global buffer or DRAM together.The typical size of PE register file is

256Byte.Since we have 500KB flip flop resouces on the FPGA and the PE array size will be about

200,it will be enough flip flop resources for us to use.

PE array is multiple PEs that connected in array that could transfer data among them.The most

important part of our hardware design is to set the feasible dataflow that go through PE array.

2.2.4 Row stationary dataflow

In our project,we will implement row stationary dataflow method.The dataflow of PE array is

shown below.

The implementation of the RS dataflow is inspired by the idea of applying a strip mining

technique in a spatial architecture. It breaks the high-dimensional convolution down into 1D

convolution primitives that can run in parallel; each primitive operates on one row of filter

weights and one row of ifmap pixels, and generates one row of psums. Psums from different

primitives are further accumulated together to generate the ofmap pixels. The inputs to the 1D

convolution come from the global buffer or DRAM. Each primitive is mapped to one PE for

processing.Therefore, the computation of each row pair stays stationary in the PE, which creates

convolutional reuse of filter weights and ifmap pixels at the RF level.

3 Milestone

Milestone 1 (Apr 5) Construct the basic building blocks of the whole neural network, including

convolutional layers, fully-connected layers, pooling layers and activation function. These blocks

are implemented by System Verilog.

Milestone 2 (Apr 19) Implementing the dataflow strategy. Maximize the data reuse to achieve

better energy efficiency.

Milestone 3 (May 3) Test the overall throughput and energy efficiency and write up necessary

documents.

Reference

[1] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Serot, and Fran¸cois Berry. Accelerating cnn

inference on fpgas: A survey. arXiv preprint arXiv:1806.01683, 2018.

[2] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient

dataflow for convolutional neural networks. In ACM SIGARCH Computer Architecture News,

volume 44, pages 367–379. IEEE Press, 2016.

[3] Liqiang Lu, Yun Liang, Qingcheng Xiao, and Shengen Yan. Evaluating fast algorithms for

convolutional neural networks on fpgas. In 2017 IEEE 25th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 101–108. IEEE, 2017. [4]

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep neural

networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017

