Top level block diagram

Hardware part:

1. Gameboy CPU (GB-Z80)
2. Sound Peripheral + Codec
3. Pixel Processing Unit + VGA Driver
4. Avalon Interface for receiving Joy Pad control and Cartridge Data

GameBoy game cartridge roms are 14-bit wide plus joypad control and other functions, a 22-bit wide Avalon Bus should be enough.

Software side on linux should handle controller input and load the game cartridge into FPGA’s block ram.
GameBoy Technical Data

CPU: Z80 Like 8 bit

Main RAM: 8K Byte

Video RAM: 8K Byte

Screen Size 2.6" Resolution: 160x144 (20x18 tiles) (We map this to 4x: 640x576)

Max # of sprites: 40 Max

sprites/line: 10 Max

sprite size: 8x16

Min sprite size: 8x8

Clock Speed: 4.194304 MHz (2^22 Hz)

Horiz Sync: 9198 KHz

Vert Sync: 59.73 Hz

Sound: 4 channels with stereo sound
GameBoy Internal MMIO

Interrupt Enable Register

-- FFFF

Internal RAM

-- FF80

Empty but unusable for I/O

-- FF4C

I/O ports

-- FF00

Empty but unusable for I/O

-- FEA0

Sprite Attribute Memory (OAM)

-- FE00

Echo of 8kB Internal RAM

-- E000

8kB Internal RAM

-- C000

8kB switchable RAM bank

-- A000

8kB Video RAM

-- 8000

16kB switchable ROM bank

-- 6000

-- 4000

16kB ROM bank #0

-- 2000

-- 0000
Reserved Memory Locations (After Bootstrap)

0000 Restart $00 Address (RST $00 calls this address. Where Boot Sequence starts)
0008 Restart $08 Address (RST $08 calls this address.)
0010 Restart $10 Address (RST $10 calls this address.)
0018 Restart $18 Address (RST $18 calls this address.)
0020 Restart $20 Address (RST $20 calls this address.)
0028 Restart $28 Address (RST $28 calls this address.)
0030 Restart $30 Address (RST $30 calls this address.)
0038 Restart $38 Address (RST $38 calls this address.)
0040 Vertical Blank Interrupt Start Address
0048 LCDC Status Interrupt Start Address
0050 Timer Overflow Interrupt Start Address
0058 Serial Transfer Completion Interrupt Start Address (Link)
0060 High-to-Low of P10-P13 Interrupt Start Address (Joy Pads)

An internal information area is located at 0100-014F in each cartridge. It contains the following values:

0100-0103 This is the begin code execution point in a cart. Usually there is a NOP and a JP instruction here but not always.

0104-0133 Scrolling Nintendo graphic:

```
CE ED 66 66 CC 0D 00 0B 03 73 00 83 00 0C 00 0D
00 08 11 1F 88 89 00 0E DC CC 6E E6 DD DD D9 99
BB BB 67 63 6E 0E EC CC DD DC 99 9F BB B9 33 3E
(PROGRAM WON'T RUN IF CHANGED!!!)
```

0134-0142 Title of the game in UPPER CASE ASCII. If it is less than 16 characters then the remaining bytes are filled with 00's.

0143 $80 = Color GB, $00 or other = not Color GB (Should be 00 in our case)
Ascii hex digit, high nibble of licensee code (new).

Ascii hex digit, low nibble of licensee code (new). (These are normally 00 if $[014B] \neq 33$.)

GB/SGB Indicator ($00 = $GameBoy$, 03 = $Super GameBoy$ functions)
(Super GameBoy functions won't work if $\neq 03$.)

Cartridge type:

0 - ROM ONLY
1 - ROM+MBC1
2 - ROM+MBC1+RAM
3 - ROM+MBC1+RAM+BATT
5 - ROM+MBC
6 - ROM+MBC2+BATTERY
8 - ROM+RAM
9 - ROM+RAM+BATTERY
B - ROM+MMM01
C - ROM+MMM01+SRAM
D - ROM+MMM01+SRAM+BATT
F - ROM+MBC3+TIMER+BATT
10 - ROM+MBC3+TIMER+RAM+BATT
11 - ROM+MBC312 - ROM+MBC3+RAM
13 - ROM+MBC3+RAM+BATT
19 - ROM+MBC5 (MBC5 for Pokemon Yellow)
1A - ROM+MBC5+RAM
1B - ROM+MBC5+RAM+BATT
1C - ROM+MBC5+RUMBLE
1D - ROM+MBC5+RUMBLE+SRAM
1E - ROM+MBC5+RUMBLE+SRAM+BATT
1F - Pocket Camera
FD - Bandai TAMA5
FE - Hudson HuC-3
FF - Hudson HuC-1

0148 ROM size:
0 - 256Kbit = 32KByte = 2 banks
1 - 512Kbit = 64KByte = 4 banks
2 - 1Mbit = 128KByte = 8 banks
3 - 2Mbit = 256KByte = 16 banks
4 - 4Mbit = 512KByte = 32 banks
5 - 8Mbit = 1MByte = 64 banks
6 - 16Mbit = 2MByte = 128 banks
$52 - 9Mbit = 1.1MByte = 72 banks
$53 - 10Mbit = 1.2MByte = 80 banks
$54 - 12Mbit = 1.5MByte = 96 banks

0149 RAM size:
0 - None
1 - 16kBit = 2kB = 1 bank
2 - 64kBit = 8kB = 1 bank
3 - 256kBit = 32kB = 4 banks
4 - 1MBit = 128kB = 16 banks

014A Destination code:
0 - Japanese
1 - Non-Japanese

014B Licensee code (old):
33 - Check 0144/0145 for Licensee code.

79 - Accolade

A4 – Konami

(Super GameBoy function won't work if != $33.)

014C Mask ROM Version number (Usually $00)

014D Complement check

(PROGRAM WON'T RUN ON GB IF NOT CORRECT!!!)

(It will run on Super GB, however, if incorrect.)

014E-014F Checksum (higher byte first) produced by adding all bytes of a cartridge except for two checksum bytes and taking two lower bytes of the result. (GameBoy ignores this value.)
MMIO Registers

FF00

<table>
<thead>
<tr>
<th>Name</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>Register for reading joy pad info and determining system type. (R/W)</td>
</tr>
<tr>
<td>Bit 7</td>
<td>Not used</td>
</tr>
<tr>
<td>Bit 6</td>
<td>Not used</td>
</tr>
<tr>
<td>Bit 5</td>
<td>P15 out port</td>
</tr>
<tr>
<td>Bit 4</td>
<td>P14 out port</td>
</tr>
<tr>
<td>Bit 3</td>
<td>P13 in port</td>
</tr>
<tr>
<td>Bit 2</td>
<td>P12 in port</td>
</tr>
<tr>
<td>Bit 1</td>
<td>P11 in port</td>
</tr>
<tr>
<td>Bit 0</td>
<td>P10 in port</td>
</tr>
</tbody>
</table>

This is the matrix layout for register $FF00$:

```
P14   P15
|-----|-----|
P10----0-Right----0-A
|-----|-----|
P11----0-Left-----0-B
|-----|-----|
P12----0-Up--------0-Select
|-----|-----|
P13----0-Down------0-Start
|-----|-----|
```

FF01

<table>
<thead>
<tr>
<th>Name</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>Serial transfer data (R/W)</td>
</tr>
</tbody>
</table>

8 Bits of data to be read/written

FF02

<table>
<thead>
<tr>
<th>Name</th>
<th>SC</th>
</tr>
</thead>
</table>
Contents

- SIO control (R/W)

Bit 7 - Transfer Start Flag
- 0: Non transfer
- 1: Start transfer

Bit 0 - Shift Clock
- 0: External Clock (500KHz Max.)
- 1: Internal Clock (8192Hz)

FF04

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIV</td>
<td>Divider Register (R/W)</td>
</tr>
</tbody>
</table>

FF05

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMA</td>
<td>Timer counter (R/W)</td>
</tr>
</tbody>
</table>

FF06

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMA</td>
<td>Timer Modulo (R/W)</td>
</tr>
</tbody>
</table>

FF07

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAC</td>
<td>Timer Control (R/W)</td>
</tr>
</tbody>
</table>

Bit 2 - Timer Stop
- 0: Stop Timer
- 1: Start Timer

Bits 1+0 - Input Clock Select
- 00: 4.096 KHz (~4.194 KHz SGB)
- 01: 262.144 KHz (~268.4 KHz SGB)
- 10: 65.536 KHz (~67.11 KHz SGB)
- 11: 16.384 KHz (~16.78 KHz SGB)
FF0F

Name - IF
Contents - Interrupt Flag (R/W)
- Bit 4: Transition from High to Low of Pin number P10-P13
- Bit 3: Serial I/O transfer complete
- Bit 2: Timer Overflow
- Bit 1: LCDC (see STAT)
- Bit 0: V-Blank

FF10

Name - NR 10
Contents - Sound Mode 1 register, Sweep register (R/W)
- Bit 6-4 - Sweep Time
- Bit 3 - Sweep Increase/Decrease
 - 0: Addition (frequency increases)
 - 1: Subtraction (frequency decreases)
- Bit 2-0 - Number of sweep shift (n: 0-7)

FF11

Name - NR 11
Contents - Sound Mode 1 register, Sound length/Wave pattern duty (R/W)
 - Only Bits 7-6 can be read.
 - Bit 7-6 - Wave Pattern Duty
 - Bit 5-0 - Sound length data (t1: 0-63)

Wave Duty:
- 00: 12.5% (_---------_---------_---------_)
- 01: 25% (---------_---------_---------_)
- 10: 50% (____________________________) (default)
- 11: 75% (____________________________)

FF12

Name - NR 12
Contents - Sound Mode 1 register, Envelope (R/W)

Bit 7-4 - Initial volume of envelope

Bit 3 - Envelope UP/DOWN
 0: Attenuate
 1: Amplify

Bit 2-0 - Number of envelope sweep (n: 0-7)
 (If zero, stop envelope operation.)

FF13

Name - NR 13

Contents - Sound Mode 1 register, Frequency lo (W)

Lower 8 bits of 11 bit frequency (x).
Next 3 bit are in NR 14 ($FF14)

FF14

Name - NR 14

Contents - Sound Mode 1 register, Frequency hi (R/W)

Only Bit 6 can be read.

Bit 7 - Initial (when set, sound restarts)

Bit 6 - Counter/consecutive selection

Bit 2-0 - Frequency's higher 3 bits (x)

FF16

Name - NR 21

Contents - Sound Mode 2 register, Sound Length; Wave Pattern Duty (R/W)

Only bits 7-6 can be read.

Bit 7-6 - Wave pattern duty

Bit 5-0 - Sound length data (t1: 0-63)

<table>
<thead>
<tr>
<th>Wave Duty</th>
<th>Percentage</th>
<th>Wave Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:</td>
<td>12.5%</td>
<td>____________-</td>
</tr>
<tr>
<td>01:</td>
<td>25%</td>
<td>_________________</td>
</tr>
</tbody>
</table>
| 10: | 50% | _________________ | (default)
| 11: | 75% | __________-_________|
FF17

Name - NR 22

Contents - Sound Mode 2 register, envelope (R/W)
Bit 7-4 - Initial volume of envelope
Bit 3 - Envelope UP/DOWN
 0: Attenuate
 1: Amplify
Bit 2-0 - Number of envelope sweep (n: 0-7)
 (If zero, stop envelope operation.)

FF18

Name - NR 23

Contents - Sound Mode 2 register, frequency lo data (W)
Frequency's lower 8 bits of 11 bit data (x).
Next 3 bits are in NR 14 ($FF19).

FF19

Name - NR 24

Contents - Sound Mode 2 register, frequency hi data (R/W)
Only bit 6 can be read.
Bit 7 - Initial (when set, sound restarts)
Bit 6 - Counter/consecutive selection
Bit 2-0 - Frequency's higher 3 bits (x)

FF1A

Name - NR 30

Contents - Sound Mode 3 register, Sound on/off (R/W)
Only bit 7 can be read
Bit 7 - Sound OFF
 0: Sound 3 output stop
 1: Sound 3 output OK
FF1B
Name - NR 31
Contents - Sound Mode 3 register, sound length (R/W)
Bit 7-0 - Sound length (t1: 0 - 255)

FF1C
Name - NR 32
Contents - Sound Mode 3 register, Select output level (R/W)
Only bits 6-5 can be read
Bit 6-5 - Select output level
 00: Mute
 01: Produce Wave Pattern RAM Data as it is (4 bit length)
 10: Produce Wave Pattern RAM data shifted once to the RIGHT (1/2)
 (4 bit length)
 11: Produce Wave Pattern RAM data shifted twice to the RIGHT (1/4)
 (4 bit length)

FF1D
Name - NR 33
Contents - Sound Mode 3 register, frequency's lower data (W)
Lower 8 bits of an 11 bit frequency (x).

FF1E
Name - NR 34
Contents - Sound Mode 3 register, frequency's higher data (R/W)
Only bit 6 can be read.
Bit 7 - Initial (when set, sound restarts)
Bit 6 - Counter/consecutive flag
Bit 2-0 - Frequency's higher 3 bits (x).

FF20
Name - NR 41
Contents - Sound Mode 4 register, sound length (R/W)

Bit 5-0 - Sound length data (t1: 0-63)

FF21

Name - NR 42
Contents - Sound Mode 4 register, envelope (R/W)

Bit 7-4 - Initial volume of envelope

Bit 3 - Envelope UP/DOWN

0: Attenuate

1: Amplify

Bit 2-0 - Number of envelope sweep (n: 0-7)

(If zero, stop envelope operation.)

FF22

Name - NR 43
Contents - Sound Mode 4 register, polynomial counter (R/W)

Bit 7-4 - Selection of the shift clock frequency of the polynomial counter

Bit 3 - Selection of the polynomial counter's step

Bit 2-0 - Selection of the dividing ratio of frequencies

FF23

Name - NR 44
Contents - Sound Mode 4 register, counter/consecutive; initial (R/W)

Only bit 6 can be read.

Bit 7 - Initial (when set, sound restarts)

Bit 6 - Counter/consecutive selection

FF24

Name - NR 50
Contents - Channel control / ON-OFF / Volume (R/W)

Bit 7 - Vin->SO2 ON/OFF
Bit 6-4 - SO2 output level (volume) (# 0-7)
Bit 3 - Vin->SO1 ON/OFF
Bit 2-0 - SO1 output level (volume) (# 0-7)

FF25
Name - NR 51
Contents - Selection of Sound output terminal (R/W)
 Bit 7 - Output sound 4 to SO2 terminal
 Bit 6 - Output sound 3 to SO2 terminal
 Bit 5 - Output sound 2 to SO2 terminal
 Bit 4 - Output sound 1 to SO2 terminal
 Bit 3 - Output sound 4 to SO1 terminal
 Bit 2 - Output sound 3 to SO1 terminal
 Bit 1 - Output sound 2 to SO1 terminal
 Bit 0 - Output sound 1 to SO1 terminal

FF26
Name - NR 52 (Value at reset: $F1-GB, $F0-SGB)
Contents - Sound on/off (R/W)
 Bit 7 - All sound on/off
 0: stop all sound circuits
 1: operate all sound circuits
 Bit 3 - Sound 4 ON flag
 Bit 2 - Sound 3 ON flag
 Bit 1 - Sound 2 ON flag
 Bit 0 - Sound 1 ON flag

FF30 - FF3F
Name - Wave Pattern RAM
Contents - Waveform storage for arbitrary sound data

FF40
Name - LCDC (value $91 at reset)
Contents - LCD Control (R/W)

Bit 7 - LCD Control Operation *
- 0: Stop completely (no picture on screen)
- 1: operation

Bit 6 - Window Tile Map Display Select
- 0: $9800-$9BFF
- 1: $9C00-$9FFF

Bit 5 - Window Display
- 0: off
- 1: on

Bit 4 - BG & Window Tile Data Select
- 0: $8800-$97FF
- 1: $8000-$8FFF <- Same area as OBJ

Bit 3 - BG Tile Map Display Select
- 0: $9800-$9BFF
- 1: $9C00-$9FFF

Bit 2 - OBJ (Sprite) Size
- 0: 8*8
- 1: 8*16 (width*height)

Bit 1 - OBJ (Sprite) Display
- 0: off
- 1: on

Bit 0 - BG Display
- 0: off
- 1: on

FF41
Name - STAT

Contents - LCDC Status (R/W)

- Bits 6-3 - Interrupt Selection By LCDC Status
- Bit 6 - LYC=LY Coincidence (Selectable)
- Bit 5 - Mode 10
- Bit 4 - Mode 01
- Bit 3 - Mode 00

 0: Non Selection
 1: Selection
- Bit 2 - Coincidence Flag

 0: LYC not equal to LCDC LY
 1: LYC = LCDC LY
- Bit 1-0 - Mode Flag

 00: During H-Blank
 01: During V-Blank
 10: During Searching OAM-RAM
 11: During Transferring Data to LCD Driver

FF42

Name - SCY

Contents - Scroll Y (R/W)

- 8 Bit value 00-FF to scroll BG Y screen position.

FF43

Name - SCX

Contents - Scroll X (R/W)

- 8 Bit value 00-FF to scroll BG X screen position.

FF44

Name - LY

Contents - LCDC Y-Coordinate (R)
FF45
Name - LYC
Contents - LY Compare (R/W)

FF46
Name - DMA
Contents - DMA Transfer and Start Address (W)

FF47
Name - BGP
Contents - BG & Window Palette Data (R/W)
 - Bit 7-6 - Data for Dot Data 11 (Normally darkest color)
 - Bit 5-4 - Data for Dot Data 10
 - Bit 3-2 - Data for Dot Data 01
 - Bit 1-0 - Data for Dot Data 00 (Normally lightest color)

FF48
Name - OBPO
Contents - Object Palette 0 Data (R/W)

FF49
Name - OBPO
Contents - Object Palette 1 Data (R/W)

FF4A
Name - WY
Contents - Window Y Position (R/W)

FF4B
Name - WX
Contents - Window X Position (R/W)

FFFF
Name - IE
Contents - Interrupt Enable (R/W)
Bit 4: Transition from High to Low of Pin number P10-P13.

Bit 3: Serial I/O transfer complete

Bit 2: Timer Overflow

Bit 1: LCDC (see STAT)

Bit 0: V-Blank

0: disable

1: enable