

EECS 4840
Embedded System

3D
Graphics Accelerator

Jie Huang (jh4000), Chao Lin (cl3654), Zixiong Liu (zl2683), Kaige Zhang(kz2325)

INTRODUCTION
We plan to make a graphics accelerator that renders 3D models on the screen. The software will
supply information of a 3D scene and the hardware will render the scene onto the screen. In the
3D model, each surface is considered as a collection of triangles that are defined by a set of
vertices. Therefore, we will render in real time the given 3D model triangle by triangle,
considering also its brightness and shading.

 2

SYSTEM OVERVIEW
The user input will be triangle vertices in 3D coordinates, the color of these vertices, a
model-view-projection matrix as well as a lighting vector and its color. The FPGA will contain a
rendering pipeline, which will render the user input to a framebuffer on the off-chip SDRAM. A
VGA output module will then send the framebuffer line by line to the VGA controller.

Software Overview

The role of the software is mainly to supply rendering information to the hardware. These
information include:

● A vector of 3D coordinates (x,y,z) used to render 3D objects such that they are composed
of triangles

● Model matrix composed of geometric transformation matrices
● View matrix that controls the viewpoint of 3D objects
● Projection matrix that converts 3D objects to 2D
● Color vector containing RGB values
● Lighting vector and its color vector

Library: OpenGL Math (GLM) is used to generate the matrices.

 3

Model, View and Projection Matrix Overview

Model Matrix

Model matrix contains every geometric transformation applied to a given object; therefore, it is
simply a matrix resulted from multiplying one or more transformation matrices, such as scaling,
translation, and rotation, together.

Rotation in x, y, z directions

 4

Scaling Translation

View Matrix

View matrix is used to simulate a moving camera view of our 3D objects. Multiplying world
coordinates to the view matrix would convert the world space into camera space, which allows
us to view the 3D object in various angles and directions.

Projection Matrix

There are two types of projection matrices: orthogonal and perspective. For this project,
orthogonal projection matrix will be used and is structured as follows:

where right, left, top, bottom are positions of the clipping plane.

 5

Hardware Overview

Our hardware contains a memory I/O to read all necessary data from Avalon Bus. Then we
design the FPGA to behave as a shader which basically fills the triangles defined by input
coordinates, color vectors, lighting vectors and Model, View and Projection matrices. After
computation, the information will firstly be saved as framebuffer to feed VGA display.

The details of the computations are as follows:

(1) Computation of 2D coordinates and depth: the homogeneous 3D coordinate of each
vertex is multiplied to the MVP matrix, which is a linear mapping from the model space
to the projection space, to obtain the 2D coordinates on the screen plus depth.

(2) Rasterization: Having obtained the 2D coordinates and the color of the vertices, the
triangle is then filled by interpolation the three vertices’ color.

(3) Computation of real color: the normal vector of each triangle of an object is supplied to
the hardware, the hardware then multiply the normal vector with the MV matrix,
yielding the normal vector in the world space. The intensity of color is produced from
the dot product of the light direction vector (in world space coordinates) and the normal
vector in the world space.

(4) The intensity is then clipped between 0 and 1 so that there is no negative intensity. The
color produced by rasterization is then multiplied with this intensity to obtain the real
color on the screen.

(5) Depth test: Having obtained the projection space coordinates (x, y, h) and color (r, g, b),
the hardware first reads the framebuffer at point (x, y) to obtain the current depth h’,
which is then compared to h. If h’ is closer to the view than h (i.e. shallower), then we do
not render this point. Otherwise we update the framebuffer at (x, y) to (r, g, b, h).

 6

 7

MEMORY BUDGET
Each object has thousands of triangles, each triangle has the following data that should be sent
to the SRAM on FPGA:

● Coordinates of 3 vertices (x,y,z,w), each coordinate has 32 bits(4 bytes):
 bytes 8 bytes4 × 4 × 3 = 4

● Color of 3 vertices (R,G,B, notused): bytes 2 bytes4 × 3 = 1

● Normal vector (x,y,z,w) : 6 bytes4 × 4 = 1

In total it is 76 bytes

Different object has different matrix parameters

● Model matrix: 5 matrices =4 × 4 bytes 20 bytes5 × 4 × 4 × 4 = 3

● View matrix: bytes 4 bytes4 × 4 × 4 = 6

● Projection matrix: bytes 4 bytes4 × 4 × 4 = 6

In total, 448 bytes.

Framebuffer: Mbytes80 40 .22884 × 6 × 4 = 1

 8

MILESTONES
Milestone 1 (April 5th):

● Implement memory controller
● Build the software to feed 3D model data

Milestone 2 (April 19th):

● Build rendering unit and rasterizer
● Software simulation for rendering correctness

Milestone 3 (May 3rd):

● Testing and Debugging

References
● https://solarianprogrammer.com/2013/05/22/opengl-101-matrices-projection-view-mo

del/
● http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

https://solarianprogrammer.com/2013/05/22/opengl-101-matrices-projection-view-model/
https://solarianprogrammer.com/2013/05/22/opengl-101-matrices-projection-view-model/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

