text++

Joi Anderson - jna2123
Klarizsa Padilla - ksp2127
Maria Javier - mj2729



Contents

Contents 2
1. Introduction 4
2. Language Tutorial 5
2.1 Environment Setup 5
2.3 Environment Setup 6
3. Language Manual 7
1. Introduction 7
1.1 Software Used 7

The bulk of our code is written in OCaml and compiles to LLVM. We also have a file written
in C to make use of the external library LibHaru, which is used in our display/PDF functions.
The open source library for generating PDF files (libHaru) is run through a shell script that
calls our code and the LLVM interpreter. (We also used the LLVM interpreter frequently
when testing individual cases.) To compile to rendering mode, we use the run.sh shell
script, which in turn calls a tpp source program. We used github for version control and for
the repository. Each team member pulled code to their own computer or virtual machine

and used their own choice of IDE. 7
1.2 LibHaru Overview 7
libHaru is a free, cross platform, open source library for generating PDF files. text++ utilizes
the following features of LibHaru: 7
Generating PDF files with lines and text. 7
Text placement via a coordinate system. 7
Embedding Type1 font and TrueType font. 7
libHaru is written in ANSI C, so theoretically it supports most of the modern operating
systems. 7
2. Lexical Conventions 8
2.1 Comments 8
2.2 |dentifiers 8
2.3 Keywords 8
2.3.1 Type-specifiers 9
2.4 Data Types 9
2.4.1 Integer 9
2.4.2 Float 9

N



2.4.3 String
2.5 Operators (Overview)
2.6 Separators
3.1 Function Declarations
3.2 Variable Declarations

4. Expressions
4.1.1 |dentifier
4.1.2 String Literal
Increment
Decrement

4.3 Multiplicative Operators

Division
Modulus
Concatenation
Addition
Subtraction
Equal and Not Equal
And
Or

5. Statements
5.3 Conditional Statements
5.5 For Statements
5.6 Return statements

6. Scope Rules
6.1 Variable Scope
6.2 Function Scope
6.3 Function Call

7. Primitives
7.1 Page Creation
7.2 Text
7.3 Alignment

8. Standard Library
8.1 Title
8.2 Drawing
8.3 Headings

9. PDF Defaults

10
10

11
11
11
11
11
12
12
12
12
12
13
13
13
13

14
14
15
15

16
16
16
16

17
17
17
20

21
21
21
22

22



4. Project Plan
4.1 Process Used
4.3 Project Timeline
4.4 Roles and Responsibilities
4.5 Software Development Environment Used
4.6 Project Log

5. Architectural Design
5.1 Block Diagram
5.2 Interfaces Between the Components
5.2 Who Implemented Each Component

6. Test Plan
6.1 Source Language Programs
6.2 Test Suites to Test Translators
6.3 Why and How These Test Cases Were Chosen
6.4 Automation Used in Testing
6.5 Division of Tasks

7. Lessons Learned
7.1 Lessons Learned

8. Code Listings

7.1 Most Important Learnings
7.2 Advice for Future Teams

8. Code Listings

1. Introduction

24
24
24
25
25
26

27
27
27
28

29
29
30
30
31
31

32
32

34

31
32

33

text++ is a markup language designed for the production of technical documentation

in an intuitive programming form. Unlike other templating languages like LaTeX,

text++ is a markup language with algorithmic computing capabilities, allowing

programmers to write documents as efficiently as they would write code.



2. Language Tutorial

To begin writing a document in text++, your document must include the def void
start() {. The function named start is a special function in all text++ programs; it is the
function called when the program is run. The start function does not need to be called
explicitly. The execution of all text++ programs begins with the start function,
regardless of where the function is actually located within the code. The document will
begin with a first page so you may begin calling write, or textout functions without first
calling the function addPage. When you would like to begin writing on a new page,
you simply call addPage. If you write def void start, a document will be created with a
new page. Outside of start you may declare functions and call them inside of start. You
may also create a function and call that function inside of start. Note: you can declare a
variable outside of start but you cannot initialize it to a value.

2.1 Environment Setup

text++ was developed in OCaml. Before using text++ to program, make sure that
Ocaml is installed properly. To do this, follow these steps:

Step 1: Install Homebrew

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"




Step 2: Install Opam and Configure OPAM

Opam is the OCaml Package Manager to install Ocaml packages and libraries. For
installation instructions, see: https://opam.ocaml.org/doc/1.1/Advanced Install.html

Step 3: Install libharu

Additionally, text++ utilizes the libharu library. Haru is a free, cross platform,
open-source software library for generating PDF.

Installing libHaru on Linux/Unix is as easy as this:

./configure && make && make install

If you're using a Git checkout or a Github tarball, don't forget to run

./buildconf.sh
in order to create script.

For more detailed instructions: https://github.com/libharu/libharu/wiki/Installation

2.3 Environment Setup

See more detailed instructions here:
https://qgithub.com/libharu/libharu/wiki/Installation



https://opam.ocaml.org/doc/1.1/Advanced_Install.html
https://github.com/libharu/libharu/wiki/Installation
https://github.com/libharu/libharu/wiki/Installation

3. Language Manual

1. Introduction

text++ is a markup language designed for the production of technical documentation
in an intuitive programming form. Unlike other templating languages like LaTeX,
text++ is a markup language with algorithmic computing capabilities, allowing
programmers to write documents as efficiently as they would write code.

1.1 Software Used

The bulk of our code is written in OCaml and compiles to LLVM. We also have a file
written in C to make use of the external library LibHaru, which is used in our
display/PDF functions. The open source library for generating PDF files (libHaru) is run
through a shell script that calls our code and the LLVM interpreter. (We also used the
LLVM interpreter frequently when testing individual cases.) To compile to rendering
mode, we use the run.sh shell script, which in turn calls a tpp source program. We
used github for version control and for the repository. Each team member pulled code
to their own computer or virtual machine and used their own choice of IDE.

1.2 LibHaru Overview

libHaru is a free, cross platform, open source library for generating PDF files. text++
utilizes the following features of LibHaru:

e Generating PDF files with lines and text.
e Text placement via a coordinate system.
e Embedding Typel font and TrueType font.

libHaru is written in ANSI C, so theoretically it supports most of the modern operating
systems.



2. Lexical Conventions

This section covers the text++ lexical convention for comments and tokens. There are
six kinds of tokens: identifiers, keywords, constants, strings, operators, and separators.
Blanks, tabs, newlines, and comments separate tokens, but they otherwise have no
syntactic significance.

2.1 Comments

Single or multi-line comments start with the /* characters and terminate with the
*/ characters, ignoring all other characters encapsulated between the start and
terminating characters.

/* This is a comment.

It can have multiple lines. */

2.2 |dentifiers

An identifier is a sequence of letters and digits, and the first character must
be alphabetic. Identifiers must start with an alphabetic character, including
the '_’ character. Identifiers are case-sensitive.

2.3 Keywords

The following identifiers are reserved for use as keywords, and may not be used

otherwise.
® if ® return @® string
® else ® int ® void
® for @® bool ® true
® while ® float ® false
@® def



2.3.1 Type-specifiers

Type-specifiers include bool, int, float, and string.

2.4 Data Types

There are three data types each with their own type, form and value :

2.4.1 Integer
An integer literal is a sequence of digits, represented by characters [0-9].
Integer constants have type int.

2.4.2 Float
A floating constant consists of an integer part, a decimal point, and a

fraction part. Float constants have type float.

2.4.3 String

Strings are marked with double quotes.

2.5 Operators (Overview)

An operator character signifies that an operation should be performed. The

operators [], (), and {} are used to encapsulate expressions and must
occur in pairs.

Operator can be one of the following:

+ - * ) % ===< <=>>= || ++

For more on operators, please reference section 4 of this guide.

2.6 Separators

A separator is a symbol between each element. There is a single separator
token in text++. The separator token in this language is a ‘," and whitespace
is ignored. Separators are allowed in the following syntax:

Argument Separation: Nl (@)



3. Declarations

3.1 Function Declarations

Functions are declared as:

returnType functionName(type parameter, type parameter2){

3.2 Variable Declarations

Variables are declared as:

type variableName;
variableName = expression;

A variable may have its value updated, as long as its type remains consistent.

10



4. Expressions
Precedence of operators follows the following order of operations: Grouping symbols,

Multiplication, Division, Addition, Subtraction. Text++ is a left-associative language
(evaluated left to right, after the application of order of operations).

4.1 Primary Expressions

4.1.1 |dentifier

An identifier (like a variable) is a primary expression whose type is
required to be defined in its declaration.
4.1.2 String Literal

A string literal is a sequence of zero or more characters enclosed within
quotation marks. A string literal is a primary expression.

4.2 Unary Operators

I expression

‘Z
(@)
—~+

Logical negation operator. Applicable for type boolean.

Increment

expression ++

The left-value expression is incremented. Applicable to type int.

Decrement

expression --

The left-value expression is decremented. Applicable to type int.

11



4.3 Multiplicative Operators

Multiplication

expression * expression
The binary * operator indicates multiplication. Applicable to type int and float.

Division

expression / expression

The binary / operator indicates division. Applicable to type int and float.

Modulus

expression % expression

The binary % operator yields the remainder from the division of the first
expression by the second. Both operands must be int. The remainder
keeps the sign of the dividend.

Concatenation

expression ” expression

To concatenate two strings on a single line, use the concatenation
operator (a single ‘"). Applicable to type string.

4.4 Additive Operators

Addition

expression + expression

—_ |
N



The result is the sum of the expressions. Applicable to type int and float.
Subtraction

expression - expression

The result is the difference of the operands. Applicable to type int and float.

4.5 Relational Operators

expression < expression
expression > expression

expression <= expression
expression >= expression

The operators <, >, <=, and >= all yield false if the relation is false and
true if the relation is true.

4.6 Equality Operators

Equal and Not Equal

expression == expression

expression != expression

The == and the != operators are analogous to the relational operators except
for their lower precedence. Thus "a < b == c < d' is true whenever ‘a < b" and
also‘c<d.

4.7 Boolean Operators

And

expression && expression

The && operator returns true if both its operands are true, false otherwise. The
second operand is not evaluated if the first operand is false.

13



Or

expression || expression

The || operator returns true if at least one of its operands is true, false otherwise.

5. Statements

Statements are executed in sequence.

5.1 End of Statement

The end of each statement is marked by a single ’;".

5.2 Expression Statements

The majority of statements are expression statements, taking the form:

expression

These statements are usually assignments or function calls.

5.3 Conditional Statements

if(expression) {
statement;

}

else {
statement;

}

If the expression is true, the (first) statement is executed. If the expression is
false and there is an else, the second statement is executed. The elseless if
problem is resolved by attaching an else to the last encountered if.

14



5.4 While Statements

while(expression) {
statement;

}

The statement is executed as long as the expression is true. The evaluation
of the expression occurs after each execution of the statement.

5.5 For Statements

for(exprl; expr2; expr3) {
statement;

}

expri1 specifies initialization for the loop, expr2 is a test condition (evaluated
before each iteration), and expr3 is an increment specification. The loop exits
when expr2 is false.

5.6 Return statements

return
return (expression)

A function returns to its caller via a return statement. The second case returns
the value of the expression. If the type expected by the caller does not
match that of the return statement, an error will be thrown.

15



6. Scope Rules

6.1 Variable Scope

Variables declared outside of functions have global scope and can be
accessed anywhere within the program. If declared within a function, variables
only remain in scope for the duration of the function’s execution. Parameters
passed into a function as arguments are declared as local variables within the
scope of the function.

6.2 Function Scope

A function may not be called before it has been declared. All functions have
global scope by default.

6.3 Function Call

To call a function, you simply need to pass the required parameters along
with the function name, and if the function returns a value, then you can
store the returned value.

nameOfMethod (argumentl, argument2, argument3) ;

16



/. Primitives

7.1 Page Creation

This function creates a new page and adds it after the last page of a
document. The function expects zero arguments and returns no value.

addPage();

7.2 Text

italic: This function enables the user to change the current font to italics
by calling italic(). The function expects zero arguments and returns no
value. Upon its call, the italics style with persist until it is changed with a

bold() or regular() call.

italic();

bold: This function enables the user to change the current font to bold by
calling bold(). The function expects zero arguments and returns no value.
Upon its call, the bold style with persist until it is changed with an italic()
or regular() call.

bold();

regular: This function enables the user to change the current font from
italics or bold back to standard font by calling regular(). The function

17



expects zero arguments and returns no value. The regular font style is set
by default in a new document. This regular font styling will continue from

the start of the document and upon its call until it is changed with a bold|()
or italic() call.

regular();

changeFontSize: Sets the size, font and style of the current font. Two
arguments, the font name and font size, are required. The font options
are: Helvetica, Times, and Courier. There are no number restrictions on
the font size.

changeFontSize(string font, int size);

changeColor: This function sets the color of the text. The set color will
persist from its call until the color is changed again. The changeColor
function requires three parameters r (red), g (green), b (blue)-- the level of
each color element. The argument values must be float values between 0O
and 1.

changeColor(float r, float g, float b);

moveTo: Sets the current position for text. Sets the start point for the
path to the point (x, y). Valid x and y coordinates are not limited by the
page width and height.

moveTo(int x, int y);

textWidth: changes the width of a page where text can be written. This
function expects a integer value less than the set page width.

textWidth(int val);

18



drawLine: prints a line from a specified coordinate position to a particular
end coordinate. This function requires four parameters, where both the
starting and ending x and y coordinates must be coordinates that lay
within the set page width and height to be displayed otherwise the
overflow will be cut off at the page limits.

drawLine(int beginX, float beginY, int endX, int endY);

drawRectangle: prints a rectangle from a specified position to a specified
width and height. This function requires four parameters, where both the
starting x and y coordinates, along with the coordinates after the addition
of the width and height integers, must be coordinates that lay within the
set page width and height. The width and height parameters may be
negative and are oriented around the specified x and y point.

drawRectangle(int beginX, float beginY, int width, int

height);

textout: This function enables a user to write a piece of text at specific x,
y coordinate. This function does handle text wrapping.

textout(int x, int y, string myText);

write: This function enables a user to write a piece of text at the current
position of the cursor. This function does handle text wrapping.

write(string myText);

getPageHeight: This function takes zero parameters and returns the
height of the page.

19



getPageHeight();

getPageWidth: This function takes zero parameters and returns the width

of the page.
getPageWidth();

pageNumber: This function takes two parameters (an x coordinate and a
y coordinate) and prints the page number of the current page at the

passed x and y coordinates.

pageNumber(int x, int y);

7.3 Alignment

left: This function sets the alignment of the text to left. The default
alignment at the creation of a new document is also left. Left alignment
persists from the start of the document and its call until it is set to a
different alignment with a center() or right() call. Zero arguments are

expected in this function.

left();

right: This function sets the alignment of the text to centered, and this
alignment persists until it is set to a different alignment with a left() or
center() call. Zero arguments are expected in this function.

right();

20



center: This function sets the alignment of the text to centered, and this
alignment persists until it is set to a different alignment with a left() or
right() call. Zero arguments are expected in this function.

8. Standard Library

8.1 Title

pageTitle: This function takes a string as it argument and centers it in
large font at the current position on the current page from which it is
called.

pageTitle(string myTitle);

8.2 Drawing

horizontalLine: This function draws a line horizontally across the width of
the page at the current position of the text. Zero arguments are expected
in this function.

horizontallLine();

table: This function draws a table on the page based on four arguments:
the number of rows in the table, the number of columns in the table, and
the table width and length. If the width or height go beyond the
dimensions of a page, the table by default will fill the page in that
dimension.

21



table(int row, int column, int tableWidth, int tableHeight);

8.3 Headings

heading: This function takes string and formats it based on HTML
heading standards. Headings are defined with the heading1 to headingé
calls. heading1 headings should be used for main headings, followed by
heading2 headings, then the less important heading3, and so on. This
function takes no parameters and the style will persist for all text until the
size of current font is reset using either the heading or changeFontSize

functions.

eadingl();
eading2();
eading3();
eading4();
eading5();
eading6();

9. PDF Defaults

Defaults in text++ documents are portrait style layout, with a width of 595 pixels and a
height of 842 pixels. It is also important to note that in our documents the bottom left
corner of the page is the origin of the x-y coordinate system. The default font and size
for the text on the page is: Helvetica, 12.

22



Sample Logo Program:

def void logo(){

int i;

int ph;

int pw;

int offsetX;
int offsety;

pw = getPageWidth();
ph = getPageHeight();
offsetX = 10;
offsetY = 100;

for (i =0; 1 < 3; 1 =1 + 1){
drawRectangle(pw/2 - offsetX, ph - offsetY, 50, 50);
offsetX = offsetX + 5;
offsetY = offsetY + 5;

}
headingl();
textout( "G" , pw/2 - 5, ph - 90, 0);

}

def void start(){
logo();
}

23



4. Project Plan

4.1 Process Used

text++ was planned in two major settings: roughly biweekly meetings with Professor Edwards
and weekly team meetings. In the first portion of the semester, these meetings served to
address the broad language goals and working on the milestone assignments. However, as the
semester progressed, so did the technical specificity of our meetings and task lists. Our team
then set goals each week in the form of agile sprints. Our sprints were based on the feedback
of Professor Edwards and the remaining tasks for our language. Using this method were able to
make consist progress towards our goals while ensuring the quality of completed tasks.

4.2 Programming Style Guide

Indent to indicate scope.

Writing multiple statements on the same line is discouraged.

Continuation lines should use a hanging indent.

Surround assignment, boolean, and concat operators with a single space on either side.
Wrap lines at 120 characters.

4.3 Project Timeline

9/11 — Assigning team roles and brainstorming ideas for the project.

9/14 — Language brainstorming and decisions on language.

9/16 — Brainstorming applications of language.

9/17 — Discuss more ideas to smooth out usage.

9/18 — Proposal drafting.

9/19 — Submission of proposal and searching of open source PDF generator

10/5 — Discuss and set up environment which includes Virtual Box and LibHaru.

10/7 — Resolved issues with installing the same environment. Explored LibHaru
10/12 — Began the implementation of AST, parser, and scanner. Revisited grammar
errors.

10/15 — Continuation of AST, parser, and scanner. Submitted.

10/28 — Worked on issues in the grammar. Hammered down core syntax of the language.
11/2 — Began creation of the type checker. Decided what additional standard library
functions we would need.

11/4 — Started working on the Hello World Demo. Encountered shared folder issues.

24



11/11 — Continued implementing syntax of text++. Worked to resolve Issues with Hello

World Demo. Start implementing basic standard library functions.
11/16 — Hello World Demo Due.
11/18 — Work to resolve integration issues and bugs with LibHaru.

11/25 — Start work on semantic checker including for assignment and binary operators

11/30 — Implementation of strings. Starting implementing PDF functions in standard
library.

12/2 — Continued implementing PDF functions in standard library.

12/7 — Working on passing text writing function. Continue implementing other PDF

functions in standard library.

12/9 — Resolving issues in translator. Continue implementing standard library. Wrote
wrapper functions for LibHaru functions.

12/14 — Implemented error messages.

12/16 — Concluded the implementation of the write function and other standard library

functions. Worked on the development of sample programs.
12/17 — Writing final report.
12/19 — Final Report Due. Concluded editing final report.

4.4 Roles and Responsibilities

Joi Anderson: Project Management and Tester
Maria Javier: System Architect and Tester

Klarizsa Padilla: Language Guru and Documentation

4.5 Software Development Environment Used

We used the following programming and development environment:

e Libraries and Languages: Ocaml version 4.07, including Ocamlyacc version 4.07 and
Ocammllex version 4.07 extensions. LLVM Ocaml version 5.0. gcc version 9.0

e Software: Development was done on SublimeText

e OS: Development was done on OSX 10.13 and on Ubuntu 18.04.

25



4.6 Project Log

joicodes #1 Jn, MJdef #2
190 commits 6,924 ++ 1,926 -- 45 commits 1,483 ++ 3,400 --
50 50
E— 4
11/25/2018 11/29/2018 12/3/2018 12/7/2018 12/11/2018 12/15/2018 11/25/2018 11/29/2018 12/3/2018 12/7/2018 12/11/2018 12/15/2018
KlarizsaPadilla #3

4 commits 64 ++ 0 --

50

S

11/25/2018 11/29/2018 12/3/2018 12/7/2018 12/11/2018 12/15/2018

* Note: Joi’s number of commits is higher than Maria’s because Joi was unable to configure a shared file.

26



5. Architectural Design

5.1 Block Diagram

canner s »Parser #:%} AST | ‘Tm.s,nam“ >‘?:Eh”;2:2;3
Semanticaly
checked 83T

LLWVM LLVM {loweeee | Code d
Executable Link Generation

A

Libharu ik
G sid lip

5.2 Interfaces Between the Components

Scanner

The scanner.mll was implemented using ocamellex. The scanner takes in source files as a
symbol stream and tokenizes it. This tokenization process provides syntax checking, and rejects
illegal symbols. The scanner is responsible for stripping out information that is not necessary
(e.g. comments and whitespace) for the the compilation process.

Parser and AST

The ast.ml and parser.mly files were implemented using using ocamlyacc. The token stream
produced by the scanner is then input to the parser. The parser produces an abstract syntax
tree (AST) from the input. The abstract syntax tree describes the structure of the program. An
acceptable structure of the AST is provided to the parser.mly by the ast.ml file. In this parsing
process further synat checking is performed. Programs that do not meet AST syntactic
requirements are then rejected.

Semantic Checker

The analyzer.ml and sast.ml files form the text++ analyzer and semantic checker. These files,
the semantic checker, were implemented in OCaml. The input into the semantic checker is the
the AST produced by the parser. The output of the semantic checker is a semantically analyzed
abstract syntax tree (SAST). The SAST, in addition to describing the overall program structure,

27



contains information attached in the analyzer. The sast.ml file provides the acceptable form of
the SAST to the analyzer.ml file. In this phase, the input undergoes rigorous semantic checking.
Programs that violate declaration, type, order, or any text++ requirements are rejected. In this
phase built-in variables and functions are added to the sast by the analyzer.

Code Generator

The generator.ml file was implemented in OCaml. The input into the code generator is the
SAST produced by the analyzer, in turn C code is produced. The majority of the code this file
generates is hard coded in codegen.ml. However, the codegen also draws on code from our
standard library - written in C utilizing libharu (a third-party library).

text++ Library

The text++ Library was implemented in C - the associated files are hello.c. The text++ library
makes use of the libharu library for carrying out some of the more complex conversions from
text++ to C code in the generator (e.g. rendering a pdf).

5.2 Who Implemented Each Component

Component Contributors
Scanner Joi, Maria, Klarizsa
Parser Joi, Maria, Klarizsa
AST Joi, Maria

SAST Joi, Maria

Semant Joi, Maria
Codegen Joi, Maria
textPlusPlus.ml Joi, Maria

hello.c Joi, Maria

28



6. Test Plan

6.1 Source Language Programs

<test-while.tpp>

void start(){
int x;

X = 0;
while(x < M

write(
=X + 1;

<test-while.out>

Falalalala
Falalalala
Falalalala
Falalalala
Falalalala
Falalalala
Falalalala
Falalalala
Falalalala
Falalalala

<test-for.tpp>

void start(){
int x;

for(x = 0;x < 4; x = x+1;){
write( );

29



<test-for.out>

6.2 Test Suites to Test Translators

All tests are stored in the /tests/ folder. Tests are split into a test suite and output based on
name.

6.3 Why and How These Test Cases Were Chosen

text++ used MicroC's test source files as a foundation to automate the build of our own tests.
The readMe provides instructions on how to run the test programs. An environment that
already has Ocaml, ocamlbuild, LLVM, and opam is necessary. For this project, the developers
utilized the VM image provided in order to replicate an environment with all of these
installations. On top of this, Libharu is required because some of its library components are
used in our language.

Libharu has the following dependencies: automake, autoconf, zlib1g-dev, libpng-dev, and
libtools. Once these dependencies are installed, LibHaru should be installed successfully.
Directions for doing this are on the project README. The final component especially needed
to run tests is python-pdfminer. python-pdfminor contains the source code for a command line
tool, pdf2txt which converts a pdf file into a valid ASCII file.

In order to execute the tests, run make in the project directory after downloading the tar file.
Tests are all located in a tests directory. Each test tests a small component of the language in
order to see if valid ASCIl is produced. The test are named test-<name of component>.tpp.
Make clean should clean any intermediary files that were created after running make.

The output of a successfully compiled text++ program is a PDF file with ASCII characters,
stylized fonts, and lines for graphics. To check whether test programs were correctly rendered,
the contents of the PDF files were extracted into a stream of ASCII characters using pdf2text.
While many features of text++ were tested in the test suite, the test are primarily meaningful
for the built-in functions involving changes to the outputted ASCIl characters that were
extracted from the document.

30



6.4 Automation Used in Testing

As aforementioned, the testing automation is based on the Micro-C testing suite. In the /tests/
folder the testall.sh script compiles and runs all *.cgm files. It then will look at the
corresponding *.err or *.out file of the same name and compare the output of the file to the
output of the script . Errors or differences that arise in compilation in are passed to stdout.

6.5 Division of Tasks

The testing gurus were responsible for unit testing the features that were assigned to them.
Additionally, the testing gurus were responsible for coordinating to build appropriate
integration tests.

31



/. Lessons Learned

7.1 Lessons Learned

Maria Javier

I've never made a language before and after completing this project | have a better
understanding about language design. I've learned that it is extremely important to
define the overall goal and the characteristics of a language early on so that when the
time comes to write code, there are no disputes about syntax and or structure. There
are definitely more improvements that could be made on our project and | have
developed a greater understanding about how hard it is to place a group of characters
onto a page in a stylized matter. It's more than just adding a string to a page and |
faced a lot obstacles as | was trying to get wrapping to work correctly. Although | did
struggle with Ocaml in the beginning, | now understand how powerful of a language it
can be when constructing a compiler for a language. It is a headache to get everything
working but when it works, it's beautiful.

Joi Anderson

My biggest lesson from creating the compiler was to do my research first. After
researching typesetting and markup languages like TeX and LaTeX, | was able to make
note of some of their language design decisions and useful features to use in our own
language. TeX has an extensive word wrapping, page break, and hyphenation
algorithm that we try attempted to implement in our language to provide users with
features they would typically like to see in a language like text++.

Klarizsa Padilla

Our team started early but we spent a lot of time hashing out the ideas our project. It
was challenging to decide syntax, and functionality because each of us has a different
idea of what is “intuitive” or looks more appealing. A lot of our long discussions early
in the semester were about what we wanted our language to do. | learned that you've
got to make a decision, a solid one, and stick to it if you want to make progress as
opposed to swaying back and forth in indecision.

32



7.2 Advice for Future Teams
See your advisor early, and check in often. If you are having a blocker it is important to
recognize when too much time has been spent in the same stage and get help as soon as
possible. Having weekly meetings scheduled with your adviser is also a good way to ensure
you are making progress. Try to finish the scanner and the parser as soon as possible. Do not
leave testing until the end. Testing helps with being able to catch weird edge cases and you
don’t want to get caught in a really big bug right before the deadline.

33



8. Code Listings

Scanner

(* Ocamllex scanner for textPlusPlus *)
{ open Parser }

let digit = ['@' '9']
let digits = digit+

rule token = parse
O\t '\r' '\n'] { token lexbuf } (* Whitespace *)

comment lexbuf } (* Comments *)
LPAREN }
RPAREN }
LBRACE }
RBRACE }
LBRACKET }
RBRACKET }
SEMI }
COMMA }

(* Arithmetic Operators *)
{ PLUS }

MINUS }

TIMES }
DIVIDE }
ASSIGN }

{
{
{
{

Relational Operators *)
{ EQ }

{ NEQ }

{ LT}

{ LEQ }

{ aT }

{ GEQ }

34



(* Logical Operators *)
| "&&" { AND }
| { OR }
| "1 { NOT }

(* Control Flow *)

| "if" { IF }

| "else" { ELSE }

| "for" { FOR }

| "while" { WHILE }
| "return" { RETURN }

(* Keywords *)
"int" INT }
"bool" BOOL }
"float" FLOAT }
"string" { STRING }
vOID }
BLIT(true) 1}
BLIT(false) }
DEFINE }

"void"

"false"
lldefll
* Literals and Identifiers *)

N e e e e e

|
|
|
|
|
| "tl"ue"
|
|
(

| digits as 1xm { LITERAL(int_of string 1xm) }

| digits '.' digit* ( ['e" 'E'] ['+" '-']? digits )? as 1lxm { FLIT(1lxm) }
| """ (['\x20'-"\x7E']* as 1lxm) '"' { STRLITERAL(1lxm) }

| ['a'-"'z" 'A'-'Z"']['a'-"'z" 'A'-'Z' '@'-'9" ' ']* as 1xm { ID(1xm) }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ~ Char.escaped char)) }

and comment = parse
"x/" { token lexbuf }
| { comment lexbuf }

35



Parser

/* Ocamlyacc parser for textPlusPlus */

%{
open Ast
%}

%token SEMI LPAREN RPAREN LBRACE RBRACE LBRACKET RBRACKET COMMA PLUS MINUS
TIMES DIVIDE ASSIGN

%token NOT EQ NEQ LT LEQ GT GEQ AND OR

%token RETURN IF ELSE FOR WHILE INT BOOL FLOAT STRING VOID DEFINE

%token <int> LITERAL

%token <bool> BLIT

%token <string> STRLITERAL

%»token <string> ID FLIT

%token EOF

%start program
%type <Ast.program> program

%nonassoc NOELSE
%nonassoc ELSE
%right ASSIGN

%left OR

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE
%right NOT

0/0,
'0/0

program:
declarations EOF { $1 }

declarations:
/* nothing */ { ([1, [1) }
| declarations variable declaration { (($2 :: fst $1), snd $1) }
| declarations function declaration { (fst $1, ($2 :: snd $1)) }

function_declaration:




DEFINE typ ID LPAREN parameters RPAREN LBRACE vdecl list codeblock
RBRACE
{ { typ = $2;
fname = $3;
formals = List.rev $5;
locals = List.rev $8;
body = List.rev $9 } }

parameters:
/* nothing */ { [] }
| formal list { $1 }

formal_ list:

typ ID { [($1,%$2)] }
| formal list COMMA typ ID { ($3,%$4) :: $1 }

typ:
INT { Int }
| STRING { String }
| BOOL { Bool }
|
I

FLOAT { Float }
VOID { Void }

vdecl list:
/* nothing */ {11}
| vdecl 1list variable_declaration { $2 :: $1 }

variable_declaration:
typ ID SEMI { (%1, $2) }

codeblock:
/* nothing */ { [] }
| codeblock stmt { $2 :: $1 }

stmt:
expression SEMI Expr $1 }
RETURN expr_opt SEMI Return $2 }
LBRACE codeblock RBRACE Block(List.rev $2) }
IF LPAREN expression RPAREN stmt %prec NOELSE If($3, $5, Block([]))

IF LPAREN expression RPAREN stmt ELSE stmt { If($3, $5, $7) }
FOR LPAREN expr _opt SEMI expression SEMI expr_opt RPAREN stmt




{ For($3, $5, $7, $9) }
| WHILE LPAREN expression RPAREN stmt { While($3, $5) }

expr_opt:
/* nothing { Noexpr }
| expression { %1}

expression:
LITERAL Literal($1) }
STRLITERAL StrLiteral($1) }
FLIT { Fliteral($1) }
BLIT BoolLit($1) }
ID Id($1) }
expression PLUS expression Binop($1, Add, $3)
expression MINUS expression Binop($1, Sub, $3)
expression TIMES expression Binop($1, Mult, $3)
expression DIVIDE expression Binop($1, Div, $3)
expression EQ expression Binop($1, Equal, $3)
expression NEQ expression Binop($1, Neq, $3)
expression LT expression Binop($1, Less, $3)
expression LEQ expression Binop($1, Leq, $3)
expression GT expression Binop($1, Greater, $3)
expression GEQ expression Binop($1, Geq, $3)
expression AND expression Binop($1, And, $3)
expression OR expression Binop($1, Or, $3)
MINUS expression %prec NOT Unop(Neg, $2) 1}
NOT expression Unop(Not, $2) }
ID ASSIGN expression Assign($1, $3) }
ID LPAREN optional arguments RPAREN { Call($1, $3) }
LPAREN expression RPAREN $2 }

P T e N e T T T S S e S

optional_arguments:
/* nothing */ { [] }
| arguments { List.rev $1 }

arguments:
expression { [$1] }
| arguments COMMA expression { $3 :: $1 }




(* Abstract Syntax Tree *)

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq

And | Or

type uop = Neg | Not

type typ = Int | Bool | Float | Void | String
type bind = typ * string

type expr =
Literal of int
StrLiteral of string
Fliteral of string
BoolLit of bool
Id of string
Binop of expr * op * expr
Unop of uop * expr
Assign of string * expr
Call of string * expr list
Noexpr

type stmt =
Block of stmt list
Expr of expr
Return of expr
If of expr * stmt * stmt
For of expr * expr * expr * stmt
While of expr * stmt

type func _decl =
typ : typ;
fname : string;
formals : bind list;
locals : bind list;
body : stmt list;

type program = bind list * func_decl list




(* Pretty-printing functions *)

let string of op = function

Add -> "+"

Sub -> "-"

Mult -> "*"

Div -> "/"

Neq -> "!I="

Less -> "<"

Leqg -> "<=

Greater -> ">"

Geq -> ||>=||

And -> "&&"
OI"‘ -> ||||||

string of uop = function
Neg _> II_II
Not -> "I"

rec string of expr = function
Literal(l) -> string of int 1
StrLiteral(l) -> 1
Fliteral(l) -> 1
BoolLit(true) -> "true"
BoolLit(false) -> "false"
Id(s) -> s
Binop(el, o, e2) ->
string of expr el ~ " " ~ string of op o ~ " " ~ string of expr e2
Unop(o, e) -> string of uop o ”~ string of _expr e
Assign(v, e) -> v A~ " = " ~ string of expr e
Call(f, el) -»>
£ ~ "(" ~ String.concat
Noexpr -> ""

, " (List.map string of expr el) ~ ")

rec string of_stmt = function
Block(stmts) ->
"{\n" ~ String.concat (List.map string of stmt stmts) ~ "}\n"
Expr(expr) -> string of_expr expr ~ ";\n";
Return(expr) -> "return " ”~ string of expr expr ~ ";\n";
If(e, s, Block([])) -> "if (" ~ string of expr e ~ ")\n" ~




string of stmt s
| If(e, s1, s2) -> "if (" ~ string of _expr e ~ ")\n" ~
string of stmt s1 ~ "else\n" ”~ string of stmt s2
| For(el, e2, e3, s) ->
"for (" ”~ string of expr el

; " N string_of _expr e2 A~ " ; " A

string of expr e3 ~ ") " ~ string of stmt s
While(e, s) -> "while (" ”~ string of expr e ~ ") " ~ string of stmt s

string of typ = function
Int -> "int"

String -> "string"

Bool -> "bool"

Float -> "float"

Void -> "void"

let string of vdecl (t, id) = string of typ t ~ " " ~ id ~ ";\n"

let string of fdecl fdecl =
"def " ~ string of typ fdecl.typ ~ " " ~
fdecl.fname ~ "(" ~ String.concat ", " (List.map snd fdecl.formals) ~
")\n{\n"
String.concat
String.concat

“}\n"

(List.map string of vdecl fdecl.locals) *
(List.map string of stmt fdecl.body) *

let string of program (vars, funcs) =
String.concat "" (List.map string of_vdecl vars) ~ "\n" 2
String.concat "\n" (List.map string of fdecl funcs)

41



Semant

(* Semantic checking for textPlusPlus compiler *)

open Ast
open Sast

module StringMap = Map.Make(String)

(* Semantic checking of the AST. Returns an SAST if successful,
throws an exception if something is wrong.

Check each global variable, then check each function *)
let check (globals, functions) =

(* Verify a list of bindings has no void types or duplicate names *)
let check _binds (kind : string) (binds : bind list) =
List.iter (function
(Void, b) raise (Failure ("Illegal void " ~ kind ~ " " ~ b))
| _ -> ()) binds;
let rec dups = function
[1->0
| ((_,n1) :: (,n2) :: ) when nl = n2 ->
raise (Failure ("Duplicate name" ~ kind ~ " " 2~ nl))
| _:: t -> dups t
in dups (List.sort (fun (_,a) (_,b) -> compare a b) binds)
in

(**** Check global variables ****)

check_binds "global" globals;

(**** Check functions ****)

(* Collect function declarations for built-in functions: no bodies *)
let built in_decls =
StringMap.add "addPage"

{ typ = Int; fname = "addPage"; formals = [];
locals = []; body = [] }




(StringMap.add "left"
{ typ = Void; fname = "left"; formals = [];
locals = []; body = [] }

(StringMap.add "right"
typ = Void; fname = "right"; formals = [];
locals = []; body = [] }

(StringMap.add "center"
typ = Void; fname = "center"; formals = [];
locals = []; body = [] }

(StringMap.add "write"
{ typ = Void; fname = "write"; formals = [(String, "x")];
locals = []; body = [] }

(StringMap.add "textOut"
{ typ = Void; fname = "textOut"; formals = [(Int, "y"); (Int, "z");
(String, "x");1;
locals = []; body = [] }

( StringMap.add "moveTo"
{ typ = Void; fname = "moveTo"; formals = [(Int, "x"); (Int, "y")];
locals = []; body = [] }

(StringMap.add "bold"
{ typ = Void; fname = "bold"; formals = [];
locals = []; body = [] }

(StringMap.add "italic"
{ typ = Void; fname = "italic"; formals = [];
locals = []; body = [] }

(StringMap.add "regular"
{ typ = Void; fname = "regular"; formals = [];
locals = []; body = [] }

(StringMap.add "changeColor"




{ typ = Void; fname = "changeColor"; formals = [(Float, "x"); (Float,
"y"); (Float, "z")];
locals = []; body = [] }

(StringMap.add "changeFontSize"
{ typ = Void; fname = "changeFontSize"; formals = [(String, "x"); (Int,
"y') 15
locals = []; body = [] }

(StringMap.add "drawLine"
{ typ = Void; fname = "drawLine"; formals = [(Int, "x"); (Int, "y");
(Int, "z"); (Int, "a")l;
locals = []; body = [] }

(StringMap.add "drawRectangle"
{ typ = Void; fname = "drawRectangle"; formals = [(Int, "x"); (Int,
"y"); (Int, "z"); (Int, "a")];
locals = []; body = [] }

(StringMap.add "pageNumber"
{ typ = Int; fname = "pageNumber"; formals = [(Int, "x"); (Int,
"y 1s

locals = []; body = [] }

(StringMap.add "getTextWidth"
{ typ = Int; fname = "getTextWidth"; formals = [(String, "x")];
locals = []; body = [] }

(StringMap.add "getPageHeight"
{ typ = Int; fname = "getPageHeight"; formals = [];
locals = []; body = [] }

(StringMap.add "getPageWidth"
{ typ = Int; fname = "getPageWidth"; formals = [];
locals = []; body = [] }




(StringMap.add "pageTitle"

{ typ = Void; fname = "pageTitle"; formals = [(String, "x");];

locals = []; body = [] }

(StringMap.add "table"
{ typ = Void; fname = "table"; formals = [(Int, "x"); (Int, "y");
"2"); (Int, "a")l;

locals = []; body = [] }

(StringMap.add "headingl"
{ typ = Void; fname = "headingl"; formals
locals = []; body = [] }

(StringMap.add "heading2"
{ typ = Void; fname = "heading2"; formals
locals = []; body = [] }

(StringMap.add "heading3"
{ typ = Void; fname = "heading3"; formals
locals = []; body =[] }

(StringMap.add "heading4"
{ typ = Void; fname = "heading4"; formals
locals = []; body =[] }

(StringMap.add "heading5"
{ typ = Void; fname = "heading5"; formals
locals = []; body [T}

(StringMap.add "heading6"
{ typ = Void; fname = "heading6"; formals
locals = []; body =[] }

(StringMap.add "getCurrentY"
{ typ = Int; fname = "getCurrentY"; formals
locals = []; body =[] }

(StringMap.add "getCurrentX"
{ typ = Int; fname = "getCurrentX"; formals
locals = []; body =[] }




(StringMap.add "getCapHeight"
{ typ = Int; fname = "getCapHeight"; formals
locals = []; body =[] }

(StringMap.add "getLowHeight"
{ typ = Int; fname = "getLowHeight"; formals
locals = []; body =[] }

(StringMap.add "getTextBytes"
{ typ = Int; fname = "getTextBytes"; formals [(String, "x"
(Int, "y"); (Int, "z")];
locals = []; body = [] }

(StringMap.add "setRMargin"
{ typ = Int; fname = "setRMargin"; formals [(Int, "y")];
locals = []; body = [] }

(StringMap.add "setLMargin"
{ typ = Int; fname = "setLMargin"; formals [(Int, "y")];
locals = []; body = [] }

(StringMap.add "setTopMargin"
{ typ = Int; fname = "setTopMargin"; formals [(Int, "y")];
locals = []; body = [] }

(StringMap.add "setBotMargin"
{ typ = Int; fname = "setBotMargin"; formals [(Int, "y")];
locals = []; body = [] } StringMap.empty

)))))))))))))))))INNNIIIIIIIIDD))
in

(* Add function name to symbol table *)
let add func map fd =
let built in_err = "The function " ~ fd.fname ~ " is a built in
function and may not be defined."
and dup_err = "Duplicate function name: " ~ fd.fname
and make _err er = raise (Failure er)
and n = fd.fname (* Name of the function *)
in match fd with (* No duplicate functions or redefinitions of

IE




built-ins *)

_ when StringMap.mem n built in decls -> make err built in_err
when StringMap.mem n map -> make_err dup_err
-> StringMap.add n fd map

in

(* Collect all function names into one symbol table *)
let function decls = List.fold left add func built in decls functions
in

(* Return a function from our symbol table *)
let find func s =

try StringMap.find s function_decls

with Not found -> raise (Failure ("The following function is undefined:
"'s))

in
(* let _ = find_func "main" in (* Ensure "main" is defined

let check function func =
(* Make sure no formals or locals are void or duplicates
check _binds "formal" func.formals;
check_binds "local" func.locals;

(* Raise an exception if the given rvalue type cannot be assigned to
the given lvalue type *)

let check assign lvaluet rvaluet err =
if lvaluet = rvaluet then lvaluet else raise (Failure err)

in

(* Build local symbol table of variables for this function *)
let symbols = List.fold left (fun m (ty, name) -> StringMap.add name ty

StringMap.empty (globals @ func.formals @ func.locals
in

(* Return a variable from our local symbol table *)
let type_of identifier s =
try StringMap.find s symbols
with Not_found -> raise (Failure ("The following variable is
undeclared: " ~ s))




in

(* Return a semantically-checked expression, i.e., with a type *)
rec expr = function
Literal 1 -> (Int, SLiteral 1)
StrLiteral 1 -> (String, SStrLiteral 1)
Fliteral 1 -> (Float, SFliteral 1)
BoolLit 1 -> (Bool, SBoolLit 1)
Noexpr -> (Void, SNoexpr)
Id s -> (type_of identifier s, SId s)
Assign(var, e) as ex ->
let 1t = type of identifier var
and (rt, e') = expr e in
let err = "Illegal assignment of a" ~ string of typ 1t ~ " to a "

string of typ rt ~ " in " ~ string of expr ex
in (check _assign 1t rt err, SAssign(var, (rt, e')))
Unop(op, e) as ex ->
let (t, e') = expr e in
let ty = match op with
Neg when t = Int || t = Float -> t

| Not when t = Bool -> Bool

| _ -> raise (Failure ("Illegal use of unary operator with a " »
string of uop op ”~ string of typ t *
" in " ~ string_of_expr ex))

in (ty, SUnop(op, (t, e')))

Binop(el, op, e2) as e ->

let (t1, el') = expr el

and (t2, e2") expr e2 in

(* All binary operators require operands of the same type *)

let same = t1 = t2 in

(* Determine expression type based on operator and operand types

let ty = match op with

Add | Sub | Mult | Div when same && t1 = Int -> Int
Add | Sub | Mult | Div when same && t1 = Float -> Float
Equal | Neq when same -> Bool
Less | Leq | Greater | Geq

when same && (tl = Int || t1 = Float) -> Bool
And | Or when same & & t1 = Bool -> Bool
_ -> raise (
Failure ("Illegal binary operator " ~




string of typ t1 ~ " " ~ string of op op ~ " " 2
string of typ t2 ~ " in " ~ string of expr e))
in (ty, SBinop((tl1, el'), op, (t2, e2")))
| call(fname, args) as call ->
let fd = find_func fname in
let param_length = List.length fd.formals in
if List.length args != param_length then
raise (Failure ("The function expected " ~ string of_int
param_length #
" arguments in " ~ string of expr call))
else let check call (ft, ) e =
let (et, e') = expr e in
let err = "Illegal argument found " ~ string of typ et %
" expected " ”~ string of typ ft ~ " in " ~ string of expr e
in (check _assign ft et err, e'")
in
let args' = List.map2 check call fd.formals args
in (fd.typ, SCall(fname, args'))

let check bool expr e =
let (t', e') = expr e
and err = "Expected Boolean expression in " " string of_expr e
in if t' != Bool then raise (Failure err) else (t', e')

in

(* Return a semantically-checked statement i.e. containing sexprs *)
let rec check stmt = function
Expr e -> SExpr (expr e)
| If(p, bl, b2) -> SIf(check bool expr p, check stmt bl, check stmt

b2)
| For(el, e2, e3, st) ->

SFor(expr el, check bool expr e2, expr e3, check stmt st)

While(p, s) -> SWhile(check bool expr p, check stmt s)

Return e -> let (t, e') = expr e in

if t = func.typ then SReturn (t, e')

else raise (

Failure ("Return gives " ~ string of typ t ~ " expected " ~
string of typ func.typ ~ " in " ”~ string of expr e))

(* A block is correct if each statement is correct and nothing
follows any Return statement. Nested blocks are flattened. *)




| Block s1 ->
let rec check stmt list = function
[Return _ as s] -> [check _stmt s]
| Return _ ::  -> raise (Failure "Nothing may follow a
return statement.")
| Block sl :: ss -> check stmt list (sl @ ss) (* Flatten

blocks *)

| s :: ss -> check stmt s :: check stmt list ss
| [1] -> []
in SBlock(check stmt list sl)

in (* body of check function *)
{ styp = func.typ;
sfname = func.fname;
sformals = func.formals;
slocals = func.locals;
sbody = match check_stmt (Block func.body) with
SBlock(sl) -> sl
| _ -> raise (Failure ("internal error: block didn't become a
block?"))
}

in (globals, List.map check function functions)

50



(* Semantically-checked Abstract Syntax Tree *)
open Ast

type sexpr = typ * sx

and sx =
SLiteral of int
SStrLiteral of string
SFliteral of string
SBoolLit of bool
SId of string
SBinop of sexpr * op * sexpr
SUnop of uop * sexpr
SAssign of string * sexpr
SCall of string * sexpr list
SNoexpr

type sstmt =
SBlock of sstmt list
SExpr of sexpr
SReturn of sexpr
SIf of sexpr * sstmt * sstmt
SFor of sexpr * sexpr * sexpr * sstmt
SWhile of sexpr * sstmt

type sfunc_decl = {
styp : typ;
sfname : string;
sformals : bind list;
slocals : bind list;
sbody : sstmt list;

type sprogram = bind list * sfunc_decl list
(* Pretty-printing functions ¥*)

let rec string_of_sexpr (t, e) =
"(" ~ string of_typ t ~ " : " ~ (match e with
SLiteral(l) -> string_of_int 1
| sstrLiteral(l) -> 1




SBoolLit(true) -> "true"
SBoolLit(false) -> "false"
SFliteral(l) -> 1
SId(s) -> s
SBinop(el, o, e2) ->
string of _sexpr el ~ " " ~ string of_op o » " " ~ string_of_sexpr e2
SUnop(o, e) -> string_of _uop o ~ string_of_sexpr e
SAssign(v, e) -> v A~ " = " ~ string_of_sexpr e
SCall(f, el) ->
£ ~ "(" ~ Sstring.concat ", " (List.map string of_sexpr el) ~ ")
SNoexpr -> ""

) A"

rec string_of_sstmt = function
SBlock(stmts) ->
"{\n" ~ String.concat (List.map string_of_sstmt stmts) ~ "}\n"
SExpr(expr) -> string_of_sexpr expr ~ ";\n";
SReturn(expr) -> "return " ~ string_of_sexpr expr * ";\n";
SIf(e, s, SBlock([])) ->
"if (" ~ string_of_sexpr e ~ ")\n" ~ string of _sstmt s
SIf(e, s1, s2) -> "if (" ~ string_of_sexpr e ~ ")\n" ~
string _of_sstmt s1 ~ "else\n" ”~ string_of_sstmt s2
SFor(el, e2, e3, s) ->
"for (" ~ string_of_sexpr e1 ~ 5 " ~ string_of_sexpr e2 ~ " ; " A
string_of_sexpr e3 2~ ") " ~ string_of_sstmt s
SWhile(e, s) -> "while (" ~ string_of_sexpr e ~ ") " ~ string_of_sstmt

let string _of_sfdecl fdecl =
"def " ~ string_of_typ fdecl.styp ~ " " ~

fdecl.sfname ~ "(" ~ String.concat
")\n{\n" ~

String.concat (List.map string_of_vdecl fdecl.slocals) ~
String.concat "" (List.map string of_sstmt fdecl.sbody) ~

n }\nll

» " (List.map snd fdecl.sformals) ~

let string_of_sprogram (vars, funcs) =
String.concat "" (List.map string of_vdecl vars) ~ "\n" ~
String.concat "\n" (List.map string_of_sfdecl funcs)




Textplusplus

(* Top-level of the textPlusPlus compiler: scan & parse the input,
check the resulting AST and generate an SAST from it, generate LLVM IR,
and dump the module *)

type action = Ast | Sast | LLVM_IR | Compile

let () =
let action = ref Compile in
let set_action a () = action := a in
let speclist = [
("-a", Arg.Unit (set_action Ast), "Print the AST");
"-s", Arg.Unit (set_action Sast), "Print the SAST");
"-1", Arg.Unit (set_action LLVM_IR), "Print the generated LLVM IR");
"-c", Arg.Unit (set_action Compile),
"Check and print the generated LLVM IR (default)");
] in
let usage_msg = "usage: ./textplusplus.native [-a|-s|-1|-c] [file.tpp]"
in
let channel = ref stdin in
Arg.parse speclist (fun filename -> channel := open_in filename)
usage_msg;

let lexbuf = Lexing.from_channel !channel in
let ast = Parser.program Scanner.token lexbuf in
match l!action with
Ast -> print_string (Ast.string_of_program ast)
| _ -> let sast = Semant.check ast in
match !action with
Ast -> ()
| sast -> print_string (Sast.string_of_sprogram sast)
| LLVM_IR -> print_string (Llvm.string_of_llmodule (Codegen.translate
sast))
| Compile -> let m = Codegen.translate sast in
Llvm_analysis.assert_valid_module m;
print_string (Llvm.string_of_llmodule m)

53



Testall
#1/bin/sh

# Regression testing script for textPlusPlus

# Step through a list of files

# Compile, run, and check the output of each expected-to-work test
# Compile and check the error of each expected-to-fail test

# Path to the LLVM interpreter
LLI="11i"
#LLI="/usr/local/opt/1llvm/bin/11i"

# Path to the LLVM compiler
LLC="11c"

# Path to the C compiler
cc=llccll

# Path to the textplusplus compiler. Usually "./textplusplus.native”

# Try "_build/textplusplus.native"” if ocamlbuild was unable to create a
symbolic link.

HTEXTPLUSPLUS=". /textplusplus.native"
TEXTPLUSPLUS="_build/textplusplus.native"

# Set time limit for all operations
ulimit -t 30

globallog=testall.log
rm -f $globallog
error=0

globalerror=0

keep=0

Usage() {
echo "Usage: testall.sh [options] [.tpp files]"

echo "-k Keep intermediate files"
echo "-h Print this help"
exit 1

SignalError() {




if [ $error -eq © ] ; then
echo "FAILED"
error=1

fi

echo " $1"

# Compare <outfile> <reffile> <difffile>
# Compares the outfile with reffile. Differences, if any, written to
difffile
Compare() {
generatedfiles="$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$1" "$2" > "$3" 2>8&1 || {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2
}

# Run <args>
# Report the command, run it, and report any errors

Run() {
echo $* 1>&2

eval $* || {
SignalError "$1 failed on $*"
return 1

# RunFail <args>
# Report the command, run it, and expect an error
RunFail() {
echo $* 1>&2
eval $* && {
SignalError "failed: $* did not report an error"
return 1

}

return O

Check() {
error=0




basename="echo $1 | sed 's/.*\\///
s/.tpp//""

reffile="echo $1 | sed 's/.tpp$//""

basedir=""echo $1 | sed 's/\/[*\/]1*$//'/."

echo -n "$basename..."

echo 1>&2
echo "#i#t#### Testing $basename” 1>&2

generatedfiles=

generatedfiles="$generatedfiles ${basename}.1ll ${basename}.s
${basename}.exe ${basename}.out" &&

Run "$TEXTPLUSPLUS" "$1" ">" "${basename}.ll" &&

Run "$LLC" "-relocation-model=pic" "${basename}.ll" ">" "${basename}.s"

Run "$CC" "-o0" "${basename}.exe" "${basename}.s" "hello.o " "-lhpdf" &&
Run "./${basename}.exe" &&

Run "pdf2txt" "-o" "${basename}.out" "text.pdf" &&

Compare ${basename}.out ${reffile}.out ${basename}.diff

# Report the status and clean up the generated files

if [ $error -eq © ] ; then
if [ $keep -eq © ] ; then
rm -f $generatedfiles
fi
echo "OK"
echo "##i#### SUCCESS" 1>&2
else
echo "###### FAILED" 1>&2
globalerror=$error
fi

CheckFail() {
error=0
basename="echo $1 | sed 's/.*\\///
s/.tpp//""
reffile="echo $1 | sed 's/.tpp$//""
basedir=""echo $1 | sed 's/\/[*\/]1*$//'/."




echo -n "$basename..."

echo 1>&2
echo "#i#t#### Testing $basename” 1>&2

generatedfiles=

generatedfiles="$generatedfiles ${basename}.err ${basename}.diff" &&
RunFail "$TEXTPLUSPLUS" "<" $1 "2>" "${basename}.err” ">>" $globallog

Compare ${basename}.err ${reffile}.err ${basename}.diff
# Report the status and clean up the generated files

if [ $error -eq © ] ; then
if [ $keep -eq © ] ; then
rm -f $generatedfiles
fi
echo "OK"
echo "###### SUCCESS" 1>&2
else
echo "###### FAILED" 1>&2
globalerror=$error
fi

while getopts kdpsh c; do
case $c in
k) # Keep intermediate files
keep=1
55
h) # Help
Usage
55
esac
done

shift “expr $OPTIND - 1°

LLIFail() {
echo "Could not find the LLVM interpreter \"$LLI\".




echo "Check your LLVM installation and/or modify the LLI variable in
testall.sh"
exit 1

}

which "$LLI" >> $globallog || LLIFail

if [ ! -f hello.o ]

then
echo "Could not find hello.o"
echo "Try \"make hello.o\""
exit 1

fi

if [ $# -ge 1 ]
then
files=%@
else
files="tests/test-*.tpp tests/fail-*.tpp"
fi

for file in $files
do
case $file in
*test-*)
Check $file 2>> $globallog
35
*fail-*)
CheckFail $file 2>> $globallog

B2
*)
echo "unknown file type $file"
globalerror=1
55
esac
done

exit $globalerror




(* Code generation: translate takes a semantically checked AST and
produces LLVM IR

LLVM tutorial: Make sure to read the OCaml version of the tutorial
http://11lvm.org/docs/tutorial/index.html
Detailed documentation on the OCaml LLVM library:

http://11vm.moe/
http://11lvm.moe/ocaml/

*)
module L
module A

open Sast

module StringMap = Map.Make(String)

(* translate : Sast.program Llvm.module *)
let translate (globals, functions) =
let context = L.global_context () in

(* Create the LLVM compilation module into which
we will generate code *)
let the_module = L.create_module context "textPlusPlus" in

(* Get types from the context *)

let i32_t = L.i32_type context

and il_t = L.i1_type context

and float_t .double_type context

and str_t .pointer_type (L.i8 type context)
and void_t .void_type context in

(* Return the LLVM type for a textPlusPlus type *)
let ltype_of_typ = function
A.Int i32_t
| A.Bool -> i1 t
| A.Float -> float_t
| A.void -> void_t




| A.String -> str_t

in

(* Create a map of global variables after creating each *)
let global_vars : L.llvalue StringMap.t =
let global _var m (t, n) =
let init = match t with
A.Float -> L.const_float (ltype of typ t) 0.0
| _ -> L.const_int (ltype_of_typ t) ©
in StringMap.add n (L.define_global n init the_module) m in
List.fold_left global_var StringMap.empty globals in

addPage_t : L.1lltype =

L.function_type i32_t [| |] in

addPage_func : L.llvalue =

L.declare_function "addPage" addPage_t the_module in

left_t : L.1lltype =

.function_type i32_t [| |] in

left_func : L.1llvalue =

L.declare_function "left" left_t the_module in

right_t : L.1lltype =

.function_type i32_t [| |] in

right_func : L.llvalue =

L.declare_function "right" right_t the_module in

center_t : L.1ltype =

.function_type i32_t [| |] in

center_func : L.llvalue =

L.declare_function "center" center_t the_module in

write_t : L.1lltype =

.function_type i32_t [| str_t |] in

write_func : L.llvalue =

L.declare_function "write" write_t the_module in

textout_t : L.1lltype =
.function_type i32_t [| i32_t ; i32_t ; str_t|] in




textOut_func : L.llvalue =
L.declare_function "textOut" textOut_t the_module in

moveTo_t : L.lltype =

.function_type i32_t [| i32_t; i32_t |] in
moveTo_func : L.llvalue =

L.declare_function "moveTo" moveTo_t the_module in

bold_t : L.1lltype =

L.function_type i32_t [| |] in

bold_func : L.llvalue =

L.declare_function "bold" bold_t the_module in

let italic_t : L.lltype =
L.function_type i32_t [| |] in
let italic_func : L.llvalue =
L.declare_function "italic" italic_t the_module in

regular_t : L.1ltype =

L.function_type i32_t [| |] in
regular_func : L.llvalue =
L.declare_function "regular" regular_t the_module in

changeColor_t : L.1lltype =

.function_type i32_t [| float_t; float_t; float_t |] in
changeColor_func : L.llvalue =

L.declare_function "changeColor" changeColor_t the_module in

changeFontSize_t : L.1lltype =

L.function_type i32_t [| str_t; i32_t |] in

changeFontSize_func : L.1llvalue =

L.declare_function "changeFontSize" changeFontSize_t the_module in

drawLine_t : L.lltype =

L.function_type i32_t [| i32_t; i32_t; i32_t; i32_t |] in
drawLine_func : L.1llvalue =

L.declare_function "drawLine" drawLine_t the_module in




drawRectangle_t : L.1lltype =

L.function_type i32_t [| i32_t; i32_t; i32_t; i32_t |] in
drawRectangle_func : L.llvalue =

L.declare_function "drawRectangle" drawRectangle_t the_module in

pageNumber_t : L.lltype =

.function_type i32_t [| i32_t; i32_t |] in

pageNumber_func : L.llvalue =

L.declare_function "pageNumber" pageNumber_t the_module in

getTextWidth_t : L.1ltype =

.function_type i32_t [| str_t |] in

getTextWidth_func : L.1llvalue =

L.declare_function "getTextWidth" getTextWidth_t the_module in

getPageHeight_t : L.1lltype =

.function_type i32_t [| |] in

getPageHeight_func : L.1llvalue =

L.declare_function "getPageHeight" getPageHeight_t the_module in

getPageWidth_t : L.1ltype =

.function_type i32_t [| |] in

getPageWidth_func : L.1llvalue =

L.declare_function "getPageWidth" getPageWidth_t the_module in

pageTitle_t : L.lltype =

L.function_type i32_t [| str_t |] in

pageTitle_func : L.llvalue =

L.declare_function "pageTitle" pageTitle_t the_module in

table_t : L.1lltype =

.function_type i32_t [| i32_t; i32_t; i32_t; i32_t |] in
table_func : L.1llvalue =

L.declare_function "table" table_t the_module in

headingl_t : L.lltype =
.function_type i32_t [| |] in
headingl_func : L.llvalue =




.declare_function "headingl" headingl_t the_module i
heading2_t : L.lltype =
.function_type i32_t [| |] in
heading2_func : L.llvalue =
.declare_function "heading2" heading2_t the_module i
heading3_t : L.lltype =
.function_type i32_t [| |] in
heading3_func : L.llvalue =
.declare_function "heading3" heading3_t the_module i
headingd t : L.lltype =
.function_type i32_t [| |] in
heading4 func : L.llvalue =
.declare_function "heading4" heading4_t the_module i
heading5_t : L.lltype =
.function_type i32_t [| |] in
heading5_func : L.llvalue =
.declare_function "heading5" heading5_t the_module i
heading6_t : L.lltype =
.function_type i32_t [| |] in
heading6_func : L.llvalue =
.declare_function "heading6" heading6_t the_module i
getCurrentY_t : L.1ltype =
L.function_type i32_t [| |] in
let getCurrentY_func : L.llvalue =
L.declare_function "getCurrentY" getCurrentY_t the_module in
let getCurrentX_t : L.1lltype =
L.function_type i32_t [| |] in
let getCurrentX_func : L.llvalue =
L.declare_function "getCurrentX" getCurrentX_t the_module in
let getCapHeight_t : L.lltype =
L.function_type i32_t [| |] in
let getCapHeight_func : L.1llvalue =
L.declare_function "getCapHeight" getCapHeight_t the_module in
let getLowHeight_t : L.lltype =
L.function_type i32_t [| |] in
let getLowHeight_func : L.llvalue =
L.declare_function "getLowHeight" getLowHeight_t the_module i
let getTextBytes_t : L.lltype =
L.function_type i32_t [| str_t; i32_t; i32_t |] in
let getTextBytes_func : L.llvalue =
L.declare_function "getTextBytes" getTextBytes_t the_module i

(***)




let setRMargin_t : L.lltype =

L.function_type i32_t [| i32_t|] in

let setRMargin_func : L.llvalue =

L.declare_function "setRMargin" setRMargin_t the_module in

let setLMargin_t : L.lltype =

L.function_type i32_t [| i32_t|] in

let setLMargin_func : L.llvalue =

L.declare_function "setLMargin" setLMargin_t the_module in

let setTopMargin_t : L.lltype =

L.function_type i32_t [| i32_t |]

let setTopMargin_func : L.llvalue

L.declare_function "setTopMargin" setTopMargin_t the_module in
let setBotMargin_t : L.lltype =

L.function_type i32_t [| i32_t |]

let setBotMargin_func : L.1llvalue

L.declare_function "setBotMargin" setBotMargin_t the_module in

(* Define each function (arguments and return type) so we can
call it even before we've created its body *)
let function_decls : (L.llvalue * sfunc_decl) StringMap.t =
let function_decl m fdecl =
let name = fdecl.sfname
and formal_types =
Array.of_list (List.map (fun (t,_) -> ltype of_typ t) fdecl.sformals)
in let ftype = L.function_type (ltype_of_typ fdecl.styp) formal_types

StringMap.add name (L.define_function name ftype the_module, fdecl) m
List.fold_left function_decl StringMap.empty functions in
(* Fill in the body of the given function *)
let build_function_body fdecl =

let (the_function, _) = StringMap.find fdecl.sfname function_decls in
let builder = L.builder_at_end context (L.entry_block the_function) in

(* Construct the function's "locals": formal arguments and locally
declared variables. Allocate each on the stack, initialize their
value, if appropriate, and remember their values in the "locals" map

*)
let local_vars =
let add_formal m (t, n) p =
L.set_value_name n p;




let local = L.build_alloca (ltype_of_typ t) n builder in
ignore (L.build_store p local builder);
StringMap.add n local m

(* Allocate space for any locally declared variables and add the
* resulting registers to our map *)

and add_local m (t, n) =

let local_var = L.build_alloca (ltype_of_typ t) n builder

in StringMap.add n local_var m

in

let formals = List.fold_left2 add_formal StringMap.empty
sformals
(Array.to_list (L.params the_function)) in
List.fold_left add_local formals fdecl.slocals
in

(* Return the value for a variable or formal argument.
Check local names first, then global names *)
let lookup n = try StringMap.find n local_vars
with Not_found -> StringMap.find n global_vars
in

(* Construct code for an expression; return its value *)
let rec expr builder ((_, e) : sexpr) = match e with
SLiteral i -> L.const_int i32_t i
SStrLiteral i -> L.build_global_stringptr i "string" builder
SBoolLit b -> L.const_int il t (if b then 1 else 0)
SFliteral 1 -> L.const_float_of string float_t 1
SNoexpr -> L.const_int i32_t ©
SId s -> L.build_load (lookup s) s builder
SAssign (s, e) -> let e' = expr builder e in
ignore(L.build_store e' (lookup s) builder); e’
SBinop ((A.Float, ) as el, op, e2) ->
let el’' = expr builder el
and e2' = expr builder e2 in
(match op with
A.Add -> L.build_fadd
A.Sub -> L.build_fsub
A.Mult -> L.build_fmul
A.Div -> L.build_fdiv
A.Equal -> L.build_fcmp L.Fcmp.Oeq




.Neqg .build_fcmp L.Fcmp.One
.Less .build_fcmp L.Fcmp.Olt
.Leqg .build_fcmp L.Fcmp.Ole
.Greater .build _fcmp L.Fcmp.Ogt
.Geq .build_fcmp L.Fcmp.Oge
.And | A. ->
raise (Failure "internal error: semant should have rejected
and/or on float")
) el' e2' "tmp" builder
SBinop (el1, op, e2) ->
let el’' = expr builder el
and e2' = expr builder e2 in
(match op with
A.Add -> L.build_add
.Sub -> L.build_sub
Mult -> L.build_mul
A.Div -> L.build_sdiv
.And -> L.build_and
.or -> L.build_or
.Equal -> L.build_icmp
.Neqg -> L.build_icmp
.Less -> L.build_icmp
.Leqg -> L.build_icmp
.Greater -> L.build_icmp
.Geq -> L.build_icmp
el' e2' "tmp" builder
Unop(op, ((t: _) as e)) ->
let e' = expr builder e in
(match op with
A.Neg when t = A.Float -> L.build_fneg
| A.Neg -> L.build_neg
| A.Not -> L.build_not) e' "tmp" builder

A
A
I
A
A
A
A
A
A
A
A

I
I
I
I
I
I
I
I
)
S

SCall ("addPage", []) ->
L.build_call addPage_func [| |] "addPage" builder

scall ("left", []) ->

L.build_call left_func [| |] "left" builder
SCall ("right", []) ->

L.build_call right_func [| |] "right" builder
SCall ("center", []) ->




L.build_call center_func [| |] "center" builder

SCall ("write", [e]) ->

L.build _call write_func [| (expr builder e) |] "write" builder

SCall ("textOut"”, [e; y; z]) ->

L.build_call textOut_func [| (expr builder e); (expr builder y);
(expr builder z) |] "textOut" builder

| scall ("moveTo", [e; y]) ->

L.build_call moveTo_func [| (expr builder e); (expr builder y)]|]

"moveTo" builder

| scall ("bold", []) ->

L.build_call bold_func [| |] "bold" builder

SCall ("italic", []) ->

L.build_call italic_func [| |] "italic" builder

SCall ("regular", []) ->

L.build_call regular_func [| |] "regular" builder

SCall ("changeColor", [e; y; z]) ->

L.build_call changeColor_func [| (expr builder e); (expr builder y);

builder z) |] "changeColor" builder

SCall ("changeFontSize", [e ; y]) ->

L.build_call changeFontSize_func [| (expr builder e); (expr builder
|1 "changeFontSize" builder

| scall ("drawLine", [e; y; z; a]) ->
L.build_call drawLine_func [| (expr builder e); (expr builder y);
(expr builder z); (expr builder a)|] "drawLine" builder
| scall ("drawRectangle", [e; y; z; a]) ->
L.build_call drawRectangle_func [| (expr builder e); (expr builder
y); (expr builder z); (expr builder a) |] "drawRectangle" builder

| scall ("pageNumber", [e; y]) ->
L.build_call pageNumber_func [|(expr builder e); (expr builder y) |]
"pageNumber" builder
| scall ("getTextWidth", [e]) ->
L.build_call getTextWidth_func [| (expr builder e) |] "getTextWidth"
builder
| scall ("getPageHeight", []) ->
L.build_call getPageHeight_func [| |] "getPageHeight" builder
| scall ("getPageWidth", []) ->
L.build_call getPageWidth_func [| |] "getPageWidth" builder




| scall ("pageTitle", [e]) ->
L.build_call pageTitle_func [| (expr builder e) |] "pageTitle"
builder
| scall ("table", [e; y; z; a]) ->
L.build_call table_func [| (expr builder e); (expr builder y); (expr
builder z); (expr builder a) |] "table" builder

SCall ("headingl", []) ->
L.build_call headingl_func [| |] "headingl" builder
SCall ("heading2", []) ->
L.build_call heading2_func [|] "heading2" builder
SCall ("heading3", []) ->
L.build_call heading3_func [|] "heading3" builder
SCall ("heading4", []) ->
L.build_call heading4 func [| "heading4" builder
SCall ("heading5", []) ->
L.build_call heading5_func [] "heading5" builder
SCall ("headingé6", []) ->
L.build_call heading6_func [] "heading6" builder
SCall ("getCurrentY", []) ->
L.build_call getCurrentY_func [| |] "getCurrentY" builder
SCall ("getCurrentX", []) ->
L.build_call getCurrentX_func [| |] "getCurrentX" builder
SCall ("getCapHeight", []) ->
L.build_call getCapHeight_func [| |] "getCapHeight" builder
SCall ("getLowHeight", []) ->
L.build_call getLowHeight_func [| |] "getLowHeight" builder
SCall ("getTextBytes", [x;y;z]) ->
L.build_call getTextBytes_func [| (expr builder x); (expr builder y);
(expr builder z) |] "getTextBytes" builder
| scall ("setRMargin", [e]) ->
L.build_call setRMargin_func [| (expr builder e) |] "setRMargin"
builder
| scall ("setLMargin", [e]) ->
L.build_call setLMargin_func [| (expr builder e) |] "setLMargin"
builder
| scall ("setTopMargin", [e]) ->
L.build_call setTopMargin_func [| (expr builder e) |] "setTopMargin"
builder
| scall ("setBotMargin", [e]) ->
L.build_call setBotMargin_func [| (expr builder e) |] "setBotMargin"
builder




| scall (f, args) ->

let (fdef, fdecl) = StringMap.find f function_decls in
let 1llargs = List.rev (List.map (expr builder) (List.rev args)) in
let result (match fdecl.styp with

A.Void -> ""
| _ -> £~ "_result") in
L.build_call fdef (Array.of_list 1llargs) result builder
in

(* LLVM insists each basic block end with exactly one "terminator"
instruction that transfers control. This function runs "instr
builder"”

if the current block does not already have a terminator. Used,
e.g., to handle the "fall off the end of the function"” case. *)
let add_terminal builder instr =
match L.block_terminator (L.insertion_block builder) with
Some _ -> ()
| None -> ignore (instr builder) in

(* Build the code for the given statement; return the builder for
the statement's successor (i.e., the next instruction will be built
after the one generated by this call) *)

let rec stmt builder = function
SBlock sl -> List.fold_left stmt builder sl
| SExpr e -> ignore(expr builder e); builder
| SReturn e -> ignore(match fdecl.styp with
(* Special "return nothing" instr *)
A.Void -> L.build_ret_void builder
(* Build return statement *)
| _ -> L.build_ret (expr builder e) builder );
builder
| SIf (predicate, then_stmt, else_stmt) ->
let bool_val = expr builder predicate in
let merge_bb = L.append_block context "merge" the_function in
let build_br_merge = L.build_br merge_bb in (* partial function *)

let then_bb = L.append_block context "then" the_function in
add_terminal (stmt (L.builder_at_end context then_bb) then_stmt)




build_br_merge;

let else_bb = L.append_block context "else" the_function in
add_terminal (stmt (L.builder_at_end context else bb) else_stmt)
build_br_merge;

ignore(L.build_cond_br bool_val then_bb else_bb builder);
L.builder_at_end context merge_bb

| Swhile (predicate, body) ->
let pred_bb = L.append_block context "while" the_function in
ignore(L.build_br pred_bb builder);

let body bb = L.append_block context "while_body" the_function in
add_terminal (stmt (L.builder_at_end context body bb) body)
(L.build_br pred_bb);

let pred_builder = L.builder_at_end context pred_bb in
let bool_val = expr pred_builder predicate in

let merge_bb = L.append_block context "merge" the_function in
ignore(L.build_cond_br bool_val body bb merge_bb pred_builder);
L.builder_at_end context merge_bb

(* Implement for loops as while loops *)
| SFor (el1, e2, e3, body) -> stmt builder
( SBlock [SExpr el ; SWhile (e2, SBlock [body ; SExpr e3]) ] )
in

(* Build the code for each statement in the function *)
let builder = stmt builder (SBlock fdecl.sbody) in

(* Add a return if the last block falls off the end *)
add_terminal builder (match fdecl.styp with
A.Void -> L.build_ret_void
| A.Float -> L.build_ret (L.const_float float_t 0.0)
| t -> L.build_ret (L.const_int (ltype_of_typ t) 0))

List.iter build_function_body functions;
the_module




Hello.c
/*
* << Haru Free PDF Library >> attach.c

* Copyright (c) Takeshi Kanno <takeshi_kanno@est.hi-ho.ne.jp>
*/

// Document Handling
char fname[256];
HPDF_Doc pdf;

// Page Handling
HPDF_Page firstPage;
HPDF_Page currentPage;

HPDF_REAL pageHeight;
HPDF_REAL pageWidth;

int pnumber;

//Text Handling
HPDF_REAL currentX;
HPDF_REAL currentY;

float tw;

// Font Handling

HPDF_Font defaultFont;
HPDF_Font currentFont;
HPDF_REAL defaultSize;
HPDF_REAL currentSize;

HPDF_Font helvetica;
HPDF_Font helveticaItalic;
HPDF_Font helveticaBold;




HPDF_Font times;
HPDF_Font timesItalic;
HPDF_Font timesBold;

HPDF_Font courier;
HPDF_Font courierItalic;
HPDF_Font courierBold;

float textWidth;
int alignment;
int 1lmarg;

int rmarg;

int bmarg;

int tmarg;

extern void start();

jmp_buf env;

// Error Handling

void

error_handler (HPDF_STATUS error_no,

HPDF_STATUS detail_no,
void *user_data

printf ("ERROR: error_no=%04X, detail_no=%u\n", (HPDF_UINT)error_no,
(HPDF_UINT)detail_no);
longjmp(env, 1);

// PAGE HANDLING FUNCTIONS
int addPage(){
/* creates and adds new page to PDF */

HPDF_Page newPage;
newPage = HPDF_AddPage(pdf);




/* updates current page and page number */
currentPage = newPage;
pnumber = pnumber + 1;

/* sets the font, size, and line width for page */
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);
HPDF_Page_SetLineWidth(currentPage, 1);

/* initializes value for pageHeight and pageWidth */
pageHeight = HPDF_Page_GetHeight(currentPage);
pageWidth = HPDF_Page_GetWidth(currentPage);

/* sets X and Y cooridintes to top left of page with margins*/
currentX = 3
currentY = pageHeight

return 0;

// TEXT HANDLING FUNCTIONS
int left(){

alignment
return 0;

right(){
alignment
return 0;

center(){
alignment
return 0;

getCapHeight (){
int f_height_point = HPDF_Font_GetCapHeight(currentFont);
return (int)(f_height_point * currentSize / ) g




int getLowHeight(){
int f_height_point = HPDF_Font_GetXHeight(currentFont);
return (int)(f_height_point * currentSize / ) §

//gets how much bytes can fit in one line given some margins on a line
int getTextBytes(char * text, int lmargin, int rmargin){

///assuming left and right margins are the same

int page_limit = pageWidth - 1lmargin - rmargin;

return (int)( HPDF_Page_MeasureText(currentPage, text, page limit,
HPDF_TRUE, NULL));

}

setLMargin(int marg){
Imarg = marg;
return 0;

setRMargin(int marg){
rmarg = marg;
return 0;

setTopMargin(int marg){
tmarg = marg;
return 0;

setBotMargin(int marg){
bmarg = marg;
return 0;

write(char * text){
// align: means left, means right, means center

int page_limit = pageWidth - 1lmarg - rmarg;

int f_height_point = HPDF_Font_GetCapHeight(currentFont);
int f_real_h = f_height_point * currentSize / 8




int last_line
int pos =

int textWidth g

int move_right = 0;

currentX = lmarg;

currentY = pageHeight - tmarg;

HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);
HPDF_Page_BeginText(currentPage);

for(;;){

int bytes = HPDF_Page_MeasureText(currentPage, text, page_limit,
HPDF_TRUE, NULL);
char *start = &text[pos];
char *end = &text[pos + bytes];
size_t length = end - start;

char *curr_string = (char *) malloc(length + 1);
memcpy(curr_string, start, length);
curr_string[length] = "\0';

switch(alignment) {
case 0: ; //left alighnment
HPDF_Page_TextOut (currentPage, currentX, currenty,
curr_string);
break;

case 1: ; //right alighnment
textWidth = HPDF_Page_TextWidth(currentPage,
curr_string);
move_right = (pageWidth - rmarg) (textWidth + 1lmarg);
HPDF_Page_TextOut (currentPage, currentX + move_right,
currentY, curr_string);
break;

case 2: ; //means center
textWidth = HPDF_Page_TextWidth(currentPage,
curr_string);




move_right = ((pageWidth - rmarg) (textWidth + 1lmarg)) /

HPDF_Page_TextOut (currentPage, currentX + move_right,
currentY, curr_string);
break;

free(curr_string);
currentY = currentY * £ real_h;
text = text + bytes;

//for the case the person writes stuff thats longer
//than the page can fit
if (currentY <= bmarg){ //default bottom marg is is the bottom

margin
HPDF_Page_EndText (currentPage);

HPDF_Page newPage;
newPage = HPDF_AddPage(pdf);

currentPage = newPage;

HPDF_Page_BeginText (currentPage);

HPDF_Page_SetFontAndSize (currentPage, currentFont,
currentSize);

currentX = 1lmarg; //set it to the margin

currentY = pageHeight tmarg;

if (last_line == 1){
break;

if (strlen(text) <= bytes){
last_line = 1;

HPDF_Page_EndText (currentPage);




int textout(int x, int y, char * text){
// align: means left, means right, means center

currentX X;
currentyY Y

int

int
int

int

int

int
int

page_limit = pageWidth - lmarg - rmarg;

f_height_point = HPDF_Font_GetCapHeight(currentFont);
f_real_h = f_height_point * currentSize / 5

last_line
pos = O;

textWidth g
move_right = 0;

HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);
HPDF_Page_BeginText(currentPage);

for(;;){

int bytes = HPDF_Page_MeasureText(currentPage, text, page_limit,
HPDF_TRUE, NULL);

char *start = &text[pos];
char *end = &text[pos + bytes];
size_t length = end - start;

char *curr_string = (char *) malloc(length + 1);
memcpy(curr_string, start, length);

curr_string[length] = "\0';

switch(alignment) {
case 0: ; //left alighnment
HPDF_Page_TextOut (currentPage, currentX, currenty,

curr_string);

break;




case 1: ; //right alighnment
textWidth = HPDF_Page_TextWidth(currentPage,
curr_string);
move_right = (pageWidth rmarg) (textWidth + lmarg);
HPDF_Page_TextOut (currentPage, currentX + move_right,
currentY, curr_string);
break;

case 2: ; //means center
textWidth = HPDF_Page_TextWidth(currentPage,
curr_string);
move_right = ((pageWidth - rmarg) (textWidth + 1lmarg)) /

HPDF_Page_TextOut (currentPage, currentX + move_right,
currentY, curr_string);
break;

free(curr_string);
currentY = currentY * £ real_h;
text = text + bytes;

//for the case the person writes stuff thats longer

//than the page can fit

if (currentY <= bmarg){ //here is the bottom margin
HPDF_Page_EndText (currentPage);

HPDF_Page newPage;
newPage = HPDF_AddPage(pdf);

currentPage = newPage;

HPDF_Page_BeginText (currentPage);
HPDF_Page_SetFontAndSize (currentPage, currentFont,
currentSize);

currentX = 1lmarg; //set it to the margin
currentY = pageHeight tmarg;

if (last_line == 1){
break;




if (strlen(text) <= bytes){
last_line = 1;

HPDF_Page_EndText (currentPage);

return 0;

int moveTo(int x , int y){
//take page, x, and y position
HPDF_REAL x_pos = x; //Harcoded for now
HPDF_REAL y pos = y;
HPDF_Page_MoveTo(currentPage, Xx_pos, y_pos);

return 0;

// FONT HANDLING FUNCTIONS
int bold(){

/* changes current font to Helvetica Bold */
if ((currentFont == helvetica) || (currentFont == helveticaItalic)){
currentFont = helveticaBold;
HPDF_Page_SetFontAndSize(currentPage, currentFont,
currentSize);

}

/* changes current font to Times Bold */
if ((currentFont == times) || (currentFont == timesItalic)){
currentFont = timesBold;
HPDF_Page_SetFontAndSize(currentPage, currentFont,
currentSize);

}




/* changes current font to Courier Bold */
if ((currentFont == courier) || (currentFont == courierItalic)){
currentFont = courierBold;
HPDF_Page_SetFontAndSize(currentPage, currentFont,
currentSize);

}

int italic(){

/* changes current font to Helvetica Italic */
if ((currentFont == helvetica) || (currentFont == helveticaBold)){

currentFont = helveticaItalic;
HPDF_Page_SetFontAndSize(currentPage, currentFont,
currentSize);

}

/* changes current font to Times Italic */

if ((currentFont == times) || (currentFont == timesBold)){
currentFont = timesItalic;
HPDF_Page_SetFontAndSize(currentPage, currentFont,
currentSize);

}

/* changes current font to Courier Italic */
if ((currentFont == courier) || (currentFont == courierBold)){
currentFont = courierItalic;
HPDF_Page_SetFontAndSize(currentPage, currentFont,
currentSize);

}

return 0;

int regular(){

/* changes current font to Helvetica */
if ((currentFont == helveticalItalic) || (currentFont ==
helveticaBold)){




currentFont = helvetica;
HPDF_Page_SetFontAndSize(currentPage, currentFont,
currentSize);

}

/* changes current font to Times */
if ((currentFont == timesItalic) || (currentFont == timesBold)){
currentFont = times;
HPDF_Page_SetFontAndSize(currentPage, currentFont,
currentSize);

}

/* changes current font to Courier */
if ((currentFont == courierItalic) || (currentFont == courierBold)){
currentFont = courier;
HPDF_Page_SetFontAndSize(currentPage, currentFont,
currentSize);

}

int changeColor( float red, float green, float blue){

/* sets the RGB values for the font */
HPDF_Page_SetRGBFill(currentPage, red, green, blue);
return 0;

int changeFontSize (char * font, int newSize){

/* updates current font and size */
currentFont = HPDF_GetFont(pdf, font, NULL);
currentSize = newSize;

/* set new font and size to current page */

HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);
return 0;

// SHAPE + LINE HANDLING FUNCTIONS




int drawLine( int startX, int startY, int endX, int endY){

// Draws a line from (startX, startY) to (endX, endY)
HPDF_Page_MoveTo(currentPage, startX, startY);
HPDF_Page_LineTo(currentPage, endX, endY);
HPDF_Page_Stroke(currentPage);

return 0;
int drawRectangle( int lowerLeftX, int lowerLeftY, int rectangleWidth, int
rectangleHeight){

/* draws a rectangle on dimentions (rectangleWidth x rectangleHeight)
with bottom left corner of rectangle at (lowerLeftX, lowerLeftY) */

HPDF_Page_Rectangle(currentPage, lowerLeftX, lowerLeftY,
rectangleWidth, rectangleHeight);
HPDF_Page_Stroke(currentPage);

return 0;

int pageNumber(int x, int y){

char strPageNumber[100];
sprintf(strPageNumber, "%d", pnumber);

HPDF_Page_BeginText(currentPage);
HPDF_Page_TextOut(currentPage, x, y, strPageNumber);
HPDF_Page_EndText(currentPage);

return 0;

// Getter Functions
int getTextWidth(char *text){
return HPDF_Page_TextWidth(currentPage, text);




getPageHeight(){

return (int)pageHeight;

getPageWidth(){

return (int)pageWidth;

getCurrentX(){
return (int)currentX;

getCurrentY(){
return (int)currenty;

// FUNCTIONS FOR STANDARD LIBRARY

// Writes a centered single line on the current page
int pageTitle(char* text){

HPDF_Page_SetFontAndSize (currentPage, currentFont, currentSize);

tw = HPDF_Page_TextWidth (currentPage, text);

HPDF_Page_BeginText (currentPage);

HPDF_Page_TextOut (currentPage, (HPDF_Page_GetWidth(currentPage)
,» HPDF_Page_GetHeight (currentPage) currentSize, text);

HPDF_Page EndText (currentPage);

return 0;

// Headings changes the font size accordingly (based on HTML standards)
int headingl(){
currentSize = g
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);
return 0;




heading2(){
currentSize = g
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);
return 0;

heading3(){
currentSize = g
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);
return 0;

heading4(){
currentSize = g
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);
return 0;

heading5(){
currentSize = g
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);
return 0;

heading6(){
currentSize = g
HPDF_Page_SetFontAndSize(currentPage, currentFont, currentSize);
return 0;

// Draws a horizantal in the current position
int horizantallLine(){

HPDF_Page_MoveTo(currentPage, currentX, currentY);
HPDF_Page_LineTo(currentPage, pageWidth, currentY);
HPDF_Page_Stroke(currentPage);

return 0;




int table(int row, int column, int tableWidth, int tableHeight){

int horizontalMax;
int verticalMax;
int rowHeight;

int columnWidth;

int r;
int c;

int i;
s

row +1;
column + 1;

if (tableWidth > (pageWidth - currentX)){
horizontalMax = pageWidth - currentX;

}

else {
horizontalMax = tableWidth;

if (tableHeight > currentY){
verticalMax currentY;

}

else {
verticalMax = tableHeight;

rowHeight = verticalMax / row;
columniWidth = horizontalMax / column;

// Draw horizantal lines
for (i =0 ; i< r ; i++ ){

HPDF_Page_MoveTo(currentPage, currentX, currentY - (rowHeight *

i));
HPDF_Page_LineTo(currentPage, horizontalMax, currentY -
(rowHeight * i));




HPDF_Page_Stroke(currentPage);

// Draw vertical lines
for ((j =13; j<c; j++ )

HPDF_Page_MoveTo(currentPage, currentX + (columnWidth * j),

currentY);

HPDF_Page_LineTo(currentPage, currentX + (columnWidth * j),
currentY - verticalMax);

HPDF_Page_Stroke(currentPage);

return 0;

int main(int argc){

/* starts program
* creates a PDF document */

pdf = HPDF_New(error_handler, NULL);

if (!pdf) {
printf ("error: cannot create PdfDoc object\n");
return 1;

/* initializing fonts */
helvetica = HPDF_GetFont(pdf, "Helvetica", NULL);
helveticaltalic = HPDF_GetFont(pdf, "Helvetica-Oblique", NULL);
helveticaBold = HPDF_GetFont(pdf, "Helvetica-Bold", NULL);




times = HPDF_GetFont(pdf, "Times-Roman", NULL);
timesItalic = HPDF_GetFont(pdf, "Times-Italic", NULL);
timesBold = HPDF_GetFont(pdf, "Times-Bold", NULL);

courier = HPDF_GetFont(pdf, "Courier", NULL);
courierItalic = HPDF_GetFont(pdf, "Courier-Oblique", NULL);
courierBold = HPDF_GetFont(pdf, "Courier-Bold", NULL);

/* creates and adds new page to PDF */
firstPage = HPDF_AddPage(pdf);
currentPage = firstPage;
pnumber = 1;

/* sets default color, size, and font */

defaultFont = HPDF_GetFont (pdf, "Helvetica", NULL);
currentFont defaultFont;

defaultSize = 12;

currentSize = defaultSize;

HPDF_Page_SetFontAndSize(firstPage, defaultFont, defaultSize);

/* sets the default alignment to left*/
alignment = 0;

/* initializes value for pageHeight and pageWidth */
pageHeight = HPDF_Page_GetHeight(firstPage);
pageWidth = HPDF_Page_GetWidth(firstPage);

/* sets line stroke width */
HPDF_Page_SetLineWidth(firstPage, 1);

/* set default margins to 25 */
rmarg = 25;
Imarg = 25;
bmarg = 25;
tmarg 25;

/* sets X and Y cooridintes to top left of page */
currentX = lmarg;




currentY = pageHeight - tmarg;

/* program starts */
start();

/* ends program

* saves file as 'text.pdf' */
HPDF_SaveToFile (pdf, "text.pdf");
HPDF_Free (pdf);

return 0;

#ifdef BUILD_TEST
int main()

{
hello(9);

return 0;

}
#endif

fail-add-page.tpp
addPage();

fail-bold.tpp

def void start(){
bold("bold sentence");

fail-italic.tpp

def void start(){
italic("italic sentence");

fail-regular.tpp
def void start(){

88



regular("regular sentence");

fail-start.tpp

def void start(1){
}

fail-text-out.tpp

def void start(){
textOut(10,10,10);
textOut("Hello World");

fail-write.tpp

def void start(){
write(123);

test-add-page.tpp

def void start(){
write("Hello World!");
addPage();
write("Hello Again World!!");

test-bold.tpp

def void start(){
bold();
write("Bolding!");

test-bot-margin.tpp

def void start(){
setBotMargin(100);
write("At school we were given an hour-long break for

lunch each day. Because my mother didn't work and our
apartment was so close by, I usually marched home with four or five other
girls in tow, all of us talking nonstop, ready to sprawl on the kitchen

89



floor to play jacks and watch All My Children while my mom handed out
sandwiches. This, for me, began a habit that has sustained me for life,
keeping a close and high-spirited council of girlfriends safe harbor of
female wisdom. In my lunch group, we dissected whatever had gone on that
morning at school, any beefs we had with teachers, any assignments that
struck us as useless. Our opinions were largely formed by committee. We
idolized the Jackson 5 and weren't sure how we felt about the Osmonds.
Watergate had happened, but none of us understood it. It seemed like a lot
of old guys talking into microphones in Washington, D.C., which to us was
just a faraway city filled with a lot of white buildings and white men. My
mom, meanwhile, was plenty happy to serve us. It gave her an easy window
into our world. As my friends and I ate and gossiped, she often stood by
quietly, engaged in some household chore, not hiding the fact that she was
taking in every word. In my family, with four of us packed into less than
nine hundred square feet of living space, we'd never had any privacy
anyway. It mattered only sometimes. Craig, who was suddenly interested in
girls, had started taking his phone calls behind closed doors in the
bathroom, the phone's curlicue cord stretched taut across the hallway from
its wall-mounted base in the kitchen.As Chicago schools went, Bryn Mawr
fell somewhere between a bad school and a good school. Racial and economic
sorting in the South Shore neighborhood continued through the S,
meaning that the student population only grew blacker and poorer with each
year. There was, for a time, a citywide integration movement to bus kids to
new schools, but Bryn Mawr parents had successfully fought it off, arguing
that the money was better spent improving the school itself. As a kid, I
had no perspective on whether the facilities were run-down or whether it
mattered that there were hardly any white kids left. The school ran from
kindergarten all the way through eighth grade, which meant that by the time
I had reached the upper grades, I knew every light switch, every chalkboard
and cracked patch of hallway. I knew nearly every teacher and most of the
kids. For me, Bryn Mawr was practically an extension of home. As I was
entering seventh grade, the Chicago Defender, a weekly newspaper that was
popular with African American readers, ran a vitriolic opinion piece that
claimed Bryn Mawr had gone, in the span of a few years, from being one of
the city's best public schools to a run- down slum governed by a ghetto
mentality. Our school principal, Dr. Lavizzo, immediately hit back with a
letter to the editor, defending his community of parents and students and
deeming the newspaper piece an outrageous lie, which seems designed to
incite only feelings of failure and flight.Dr. Lavizzo was a round, cheery
man who had an Afro that puffed out on either side of his bald spot and who
spent most of his time in an office near the building's front door. It's
clear from his letter that he understood precisely what he was up against.




Failure is a feeling long before it becomes an actual result. It's
vulnerability that breeds with self- doubt and then is escalated, often
deliberately, by fear. Those feelings of failure he mentioned were
everywhere already in my neighborhood, in the form of parents who couldn't
get ahead financially, of kids who were starting to suspect that their
lives would be no different, of families who watched their better-off
neighbors leave for the suburbs or transfer their children to Catholic
schools. There were predatory real estate agents roaming South Shore all
the while, whispering to homeowners that they should sell before it was too
late, that they'd help them get out while you still can. The inference
being that failure was coming, that it was inevitable, that it had already
half arrived. You could get caught up in the ruin or you could escape it.
They used the word everyone was most afraid of ghetto dropping it like a
1lit match. My mother bought into none of this. She'd lived in South Shore
for ten years already and would end up staying another forty. She didn't
buy into fear mongering and at the same time seemed equally inoculated
against any sort of pie-in-the-sky idealism. She was a
straight-down-the-1line realist, controlling what she could. At Bryn Mawr,
she became one of the most active members of the PTA, helping raise funds
for new classroom equipment, throwing appreciation dinners for the
teachers, and lobbying for the creation of a special multigrade classroom
that catered to higher-performing students. This last effort was the
brainchild of Dr. Lavizzo, who'd gone to night school to get his PhD in
education and had studied a new trend in grouping students by ability
rather than by again essence, putting the brighter kids together so they
could learn at a faster pace."); }

test-center-wrap.tpp

def void start(){
center();
write("At school we were given an hour-long break for lunch each day.

Because my mother didn't work and our apartment was so close by, I usually
marched home with four or five other girls in tow, all of us talking
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All
My Children while my mom handed out sandwiches."); }

91



test-draw-line.tpp

def void start(){

drawLine(25,

test-for.tpp

def void start(){
int x;
for(x = 0; x < 4; x = x + 1){
write("Do re me");

test-get-bytes.tpp

def void start(){

int x;

x = getTextBytes("Hello World", s )

/* Hello World is < page_limit so should return bytes in Hello World
*/

if(x == 11){

write("Correct Bytes to fit on Page"); }
else{

write("Incorrect Bytes to fit on Page");

test-get-low-height.tpp

def void start(){
int x;
changeFontSize("Helvetica", Mk
x = getCapHeight();
if(x == 8){

write("Correct Height"); }
else{
write("Incorrect Height");

92



test-get-cap-height.tpp

def void start(){
int x;
changeFontSize("Helvetica", )
x = getCapHeight();
if(x == 8){

write("Correct Height");
}else{
write("Incorrect Height");

test-heading.tpp

def void start(){
heading2();

write("Header");

test-hello.tpp

def void start(){
write("Hello World!");

test-italic.tpp

def void start(){
italic();
write("Italiscing!");

test-left-margin.tpp

def void start(){
setLMargin(100);
write("At school we were given an hour-long break for lunch each day.

Because my mother didn't work and our apartment was so close by, I usually
marched home with four or five other girls in tow, all of us talking
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All
My Children while my mom handed out sandwiches. This, for me, began a habit

93



that has sustained me for life, keeping a close and high-spirited council
of girlfriends safe harbor of female wisdom. In my lunch group, we
dissected whatever had gone on that morning at school, any beefs we had
with teachers, any assignments that struck us as useless. Our opinions were
largely formed by committee. We idolized the Jackson 5 and weren't sure how
we felt about the Osmonds. Watergate had happened, but none of us
understood it. It seemed like a lot of old guys talking into microphones in
Washington, D.C., which to us was just a faraway city filled with a lot of
white buildings and white men. My mom, meanwhile, was plenty happy to serve
us. It gave her an easy window into our world. As my friends and I ate and
gossiped, she often stood by quietly, engaged in some household chore, not
hiding the fact that she was taking in every word. In my family, with four
of us packed into less than nine hundred square feet of living space, we'd
never had any privacy anyway. It mattered only sometimes. Craig, who was
suddenly interested in girls, had started taking his phone calls behind
closed doors in the bathroom, the phone's curlicue cord stretched taut
across the hallway from its wall-mounted base in the kitchen.As Chicago
schools went, Bryn Mawr fell somewhere between a bad school and a good
school. Racial and economic sorting in the South Shore neighborhood
continued through the s, meaning that the student population only grew
blacker and poorer with each year. There was, for a time, a citywide
integration movement to bus kids to new schools, but Bryn Mawr parents had
successfully fought it off, arguing that the money was better spent
improving the school itself. As a kid, I had no perspective on whether the
facilities were run-down or whether it mattered that there were hardly any
white kids left. The school ran from kindergarten all the way through
eighth grade, which meant that by the time I had reached the upper grades,
I knew every light switch, every chalkboard and cracked patch of hallway. I
knew nearly every teacher and most of the kids. For me, Bryn Mawr was
practically an extension of home. As I was entering seventh grade, the
Chicago Defender, a weekly newspaper that was popular with African American
readers, ran a vitriolic opinion piece that claimed Bryn Mawr had gone, in
the span of a few years, from being one of the city's best public schools
to a run- down slum governed by a ghetto mentality. Our school principal,
Dr. Lavizzo, immediately hit back with a letter to the editor, defending
his community of parents and students and deeming the newspaper piece an
outrageous lie, which seems designed to incite only feelings of failure and
flight.Dr. Lavizzo was a round, cheery man who had an Afro that puffed out
on either side of his bald spot and who spent most of his time in an office
near the building's front door. It's clear from his letter that he
understood precisely what he was up against. Failure is a feeling long
before it becomes an actual result. It's vulnerability that breeds with




self- doubt and then is escalated, often deliberately, by fear. Those
feelings of failure he mentioned were everywhere already in my
neighborhood, in the form of parents who couldn't get ahead financially, of
kids who were starting to suspect that their lives would be no different,
of families who watched their better-off neighbors leave for the suburbs or
transfer their children to Catholic schools. There were predatory real
estate agents roaming South Shore all the while, whispering to homeowners
that they should sell before it was too late, that they'd help them get out
while you still can. The inference being that failure was coming, that it
was inevitable, that it had already half arrived. You could get caught up
in the ruin or you could escape it. They used the word everyone was most
afraid of ghetto dropping it like a 1lit match. My mother bought into none
of this. She'd lived in South Shore for ten years already and would end up
staying another forty. She didn't buy into fear mongering and at the same
time seemed equally inoculated against any sort of pie-in-the-sky idealism.
She was a straight-down-the-line realist, controlling what she could. At
Bryn Mawr, she became one of the most active members of the PTA, helping
raise funds for new classroom equipment, throwing appreciation dinners for
the teachers, and lobbying for the creation of a special multigrade
classroom that catered to higher-performing students. This last effort was
the brainchild of Dr. Lavizzo, who'd gone to night school to get his PhD in
education and had studied a new trend in grouping students by ability
rather than by again essence, putting the brighter kids together so they
could learn at a faster pace.");

}

test-page-number.tpp

def void start(){
pageNumber (25, )8

test-page-title.tpp

def void start(){
pageTitle("My name is textPlusPlus");

test-rect.tpp

def void start(){
drawRectangle(25,

95



test-regular.tpp

def void start(){
regular();

write("Regular!");

test-right-margin.tpp

def void start(){

setRMargin(100);

write("At school we were given an hour-long break for lunch each day.
Because my mother didn't work and our apartment was so close by, I usually
marched home with four or five other girls in tow, all of us talking
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All
My Children while my mom handed out sandwiches. This, for me, began a habit
that has sustained me for life, keeping a close and high-spirited council
of girlfriends safe harbor of female wisdom. In my lunch group, we
dissected whatever had gone on that morning at school, any beefs we had
with teachers, any assignments that struck us as useless. Our opinions were
largely formed by committee. We idolized the Jackson 5 and weren't sure how
we felt about the Osmonds. Watergate had happened, but none of us
understood it. It seemed like a lot of old guys talking into microphones in
Washington, D.C., which to us was just a faraway city filled with a lot of
white buildings and white men. My mom, meanwhile, was plenty happy to serve
us. It gave her an easy window into our world. As my friends and I ate and
gossiped, she often stood by quietly, engaged in some household chore, not
hiding the fact that she was taking in every word. In my family, with four
of us packed into less than nine hundred square feet of living space, we'd
never had any privacy anyway. It mattered only sometimes. Craig, who was
suddenly interested in girls, had started taking his phone calls behind
closed doors in the bathroom, the phone's curlicue cord stretched taut
across the hallway from its wall-mounted base in the kitchen.As Chicago
schools went, Bryn Mawr fell somewhere between a bad school and a good
school. Racial and economic sorting in the South Shore neighborhood
continued through the s, meaning that the student population only grew
blacker and poorer with each year. There was, for a time, a citywide
integration movement to bus kids to new schools, but Bryn Mawr parents had
successfully fought it off, arguing that the money was better spent
improving the school itself. As a kid, I had no perspective on whether the

96



facilities were run-down or whether it mattered that there were hardly any
white kids left. The school ran from kindergarten all the way through
eighth grade, which meant that by the time I had reached the upper grades,
I knew every light switch, every chalkboard and cracked patch of hallway. I
knew nearly every teacher and most of the kids. For me, Bryn Mawr was
practically an extension of home. As I was entering seventh grade, the
Chicago Defender, a weekly newspaper that was popular with African American
readers, ran a vitriolic opinion piece that claimed Bryn Mawr had gone, in
the span of a few years, from being one of the city's best public schools
to a run- down slum governed by a ghetto mentality. Our school principal,
Dr. Lavizzo, immediately hit back with a letter to the editor, defending
his community of parents and students and deeming the newspaper piece an
outrageous lie, which seems designed to incite only feelings of failure and
flight.Dr. Lavizzo was a round, cheery man who had an Afro that puffed out
on either side of his bald spot and who spent most of his time in an office
near the building's front door. It's clear from his letter that he
understood precisely what he was up against. Failure is a feeling long
before it becomes an actual result. It's vulnerability that breeds with
self- doubt and then is escalated, often deliberately, by fear. Those
feelings of failure he mentioned were everywhere already in my
neighborhood, in the form of parents who couldn't get ahead financially, of
kids who were starting to suspect that their lives would be no different,
of families who watched their better-off neighbors leave for the suburbs or
transfer their children to Catholic schools. There were predatory real
estate agents roaming South Shore all the while, whispering to homeowners
that they should sell before it was too late, that they'd help them get out
while you still can. The inference being that failure was coming, that it
was inevitable, that it had already half arrived. You could get caught up
in the ruin or you could escape it. They used the word everyone was most
afraid of ghetto dropping it like a 1lit match. My mother bought into none
of this. She'd lived in South Shore for ten years already and would end up
staying another forty. She didn't buy into fear mongering and at the same
time seemed equally inoculated against any sort of pie-in-the-sky idealism.
She was a straight-down-the-line realist, controlling what she could. At
Bryn Mawr, she became one of the most active members of the PTA, helping
raise funds for new classroom equipment, throwing appreciation dinners for
the teachers, and lobbying for the creation of a special multigrade
classroom that catered to higher-performing students. This last effort was
the brainchild of Dr. Lavizzo, who'd gone to night school to get his PhD in
education and had studied a new trend in grouping students by ability
rather than by again essence, putting the brighter kids together so they
could learn at a faster pace.");




test-right-wrap.tpp

def void start(){

right();

write("At school we were given an hour-long break for lunch each day.
Because my mother didn't work and our apartment was so close by, I usually

marched home with four or five other girls in tow, all of us talking
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All
My Children while my mom handed out sandwiches.™);

}

test-text-out.tpp

def void start(){
int x;

5
y = 50;
textOut(x, y, "Hello World!");

test-top-margin.tpp

def void start(){

setTopMargin(100);

write("At school we were given an hour-long break for lunch each day.
Because my mother didn't work and our apartment was so close by, I usually
marched home with four or five other girls in tow, all of us talking
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All
My Children while my mom handed out sandwiches. This, for me, began a habit
that has sustained me for life, keeping a close and high-spirited council
of girlfriends safe harbor of female wisdom. In my lunch group, we
dissected whatever had gone on that morning at school, any beefs we had
with teachers, any assignments that struck us as useless. Our opinions were
largely formed by committee. We idolized the Jackson 5 and weren't sure how
we felt about the Osmonds. Watergate had happened, but none of us
understood it. It seemed like a lot of old guys talking into microphones in
Washington, D.C., which to us was just a faraway city filled with a lot of
white buildings and white men. My mom, meanwhile, was plenty happy to serve
us. It gave her an easy window into our world. As my friends and I ate and
gossiped, she often stood by quietly, engaged in some household chore, not

98



hiding the fact that she was taking in every word. In my family, with four
of us packed into less than nine hundred square feet of living space, we'd
never had any privacy anyway. It mattered only sometimes. Craig, who was
suddenly interested in girls, had started taking his phone calls behind
closed doors in the bathroom, the phone's curlicue cord stretched taut
across the hallway from its wall-mounted base in the kitchen.As Chicago
schools went, Bryn Mawr fell somewhere between a bad school and a good
school. Racial and economic sorting in the South Shore neighborhood
continued through the s, meaning that the student population only grew
blacker and poorer with each year. There was, for a time, a citywide
integration movement to bus kids to new schools, but Bryn Mawr parents had
successfully fought it off, arguing that the money was better spent
improving the school itself. As a kid, I had no perspective on whether the
facilities were run-down or whether it mattered that there were hardly any
white kids left. The school ran from kindergarten all the way through
eighth grade, which meant that by the time I had reached the upper grades,
I knew every light switch, every chalkboard and cracked patch of hallway. I
knew nearly every teacher and most of the kids. For me, Bryn Mawr was
practically an extension of home. As I was entering seventh grade, the
Chicago Defender, a weekly newspaper that was popular with African American
readers, ran a vitriolic opinion piece that claimed Bryn Mawr had gone, in
the span of a few years, from being one of the city's best public schools
to a run- down slum governed by a ghetto mentality. Our school principal,
Dr. Lavizzo, immediately hit back with a letter to the editor, defending
his community of parents and students and deeming the newspaper piece an
outrageous lie, which seems designed to incite only feelings of failure and
flight.Dr. Lavizzo was a round, cheery man who had an Afro that puffed out
on either side of his bald spot and who spent most of his time in an office
near the building's front door. It's clear from his letter that he
understood precisely what he was up against. Failure is a feeling long
before it becomes an actual result. It's vulnerability that breeds with
self- doubt and then is escalated, often deliberately, by fear. Those
feelings of failure he mentioned were everywhere already in my
neighborhood, in the form of parents who couldn't get ahead financially, of
kids who were starting to suspect that their lives would be no different,
of families who watched their better-off neighbors leave for the suburbs or
transfer their children to Catholic schools. There were predatory real
estate agents roaming South Shore all the while, whispering to homeowners
that they should sell before it was too late, that they'd help them get out
while you still can. The inference being that failure was coming, that it
was inevitable, that it had already half arrived. You could get caught up
in the ruin or you could escape it. They used the word everyone was most




afraid of ghetto dropping it like a 1lit match. My mother bought into none
of this. She'd lived in South Shore for ten years already and would end up
staying another forty. She didn't buy into fear mongering and at the same
time seemed equally inoculated against any sort of pie-in-the-sky idealism.
She was a straight-down-the-line realist, controlling what she could. At
Bryn Mawr, she became one of the most active members of the PTA, helping
raise funds for new classroom equipment, throwing appreciation dinners for

the teachers, and lobbying for the creation of a special multigrade
classroom that catered to higher-performing students. This last effort was
the brainchild of Dr. Lavizzo, who'd gone to night school to get his PhD in
education and had studied a new trend in grouping students by ability
rather than by again essence, putting the brighter kids together so they
could learn at a faster pace.");

}

test-while.tpp

def void start(){
int x;
X = 0;
while(x < ){
write("Falalalala lala la la");
X + 1;

test-wrap.tpp

def void start(){
write("At school we were given an hour-long break for lunch each day.
Because my mother didn't work and our apartment was so close by, I usually

marched home with four or five other girls in tow, all of us talking
nonstop, ready to sprawl on the kitchen floor to play jacks and watch All
My Children while my mom handed out sandwiches.™);

}

100



101



