(SO3ESL3

:{Set Operation Simplification Language}:

Introduction

-
==

Operators for set-related functions

UNION

INTERSECTION

COMPLEMENT

CARDINALITY

EXAMPLES

:{1,2}: :u:{1,3,4}: =:{1,2,3,4}:
:{:{1,4,5}:,6,:{7,8}:}: :u :{5}: = {:{1,4,5}:,6,:{7,8}:,5}:

:{1,2}: :n:{1,3,4}: = :{1}:
:{:{1,4,5}:,6,:{7,8}:}: :n :{5}: = :{}:
{:{1,2}:,5,6}: :n :{:{1,2}:,6,7}: = :{:{1,2}:,6}:
:{1,3,4}: :i :{1,2}:is false

:{1,3,4}: ;i 1 is true

6 :i :{2,3}: returns an error

:{1,2}: :c:{1,3,4}: = :{3,4}:

1:c:{1,3,4}: returns error

:{1,5,6}: :c:{1,2,3,4,5,6}: = :{2,3,4}:

A=:{1,2,3,4,5}:; |A| returns 5

Order of Operations

Control flow:

- if, for, forEach
Order of operations: Set operations are
evaluated left to right in following the
following hierarchy: (),:u = :n,:c,:i. :i has
the lowest since the left and right sides of
an :i expression must be completely
evaluated before :i can. Since :u and :n
have equal order, they will be evaluated
left to right.

A:cC:uA:nB
is equivalent to A:c ((C :u A) :n B).

A:cC:nD:iB:uC
is equivalent to (A: c(C:n D)) :i (B:uC)

Syntax
/ return type of function

int add(int a, int b)

{ “——— parameters of function - have to be

declared with type and identifier

c=a+ b;\ initialization of variable

return c;

} / addition arithmetic
return statement

int main ()

{

" each test needs a main() method

int d; «— initialization of variable

d = add(1l, 2);
\ .
print (d) ; function call

return 0; ™ print call for printing integers

Set-related functions

void create set (int elmType)
void *adds (void *set ptr, void *value)
void destroy(void *set ptr)

**All other set related functions are tied to operators.

Overall Architecture

linkedlist.c
Scanner Abstract Syntax Tree setlib.c
(scanner.mll) (ast.ml) sast.ml
[
[J [J
Source Code Parser semant.ml Code Generator
(.sl file) (parser.mly) codegen.ml

Semantic Checker

Architectural Design

LLVM

Testing & Debugging

- Shell script (testall.sh) for automated testing
- Include both fails and tests

- Some standard tests from microc
- More tests for our specific set functions

- Verified that test cases pass before committing when possible
- Debugging included adding print statements at different points of setlib.c to see

why output from some tests was different from what was anticipated
- Time consuming part of testing

Roadblocks & Lessons Learned

- Time Constraints
- Underestimating Scope of work
Starting Late
- Initial debug of parsing errors
- Too much reverse engineering
Read more documentation
- Determining how to implement set type

Set Literal
Connecting set struct to codegen

- Recursive Functions

Demonstration

int main()

{

e Variable Declaration

set:{int}: a; o !\lested.set OK {:{int}:}:
a = :{1,2,3}:; e SetlLit assignment

e Set Operators
set:{int}: b; o :Uu-Union :returns void *
b= :{4,5,6}):; o :i-has:returnsint (1,0)

prints("OK")ﬁ

return 0;

