
The Language for High Performance Parsing
of Graphs Ben Lewinter

bsl2121
Manager

Irina Mateescu
im2441

Language Guru

Harry Smith
hs3061

System Architect

Yasunari Watanabe
yw3239

Test Expert

Motivation

A Language for Graphs

Graph theory is an important field in computer science,
with wide ranging applications

We thought there should be a language
that made experimenting with and
utilizing graphs easier!

giraph from Fall 2017 was a major inspiration for us, but
we had some ideas for what could be added...

Goals

1. Unified graph type - generic graph type that can handle any type of edge

2. Customizable node names - giving the user greater control over their graphs

3. Cypher-like query capabilities - especially helpful when using graph to store large amounts
of data

4. Anonymous functions - for passing in user-defined graph operations

5. Search Strategy Type - specifying traversal method in graph iteration

Workflow and Team Processes

scanner.mll 70 lines

parser.mly 160

ast.ml 178

sast.ml 109

semant.ml 446

codegen.ml 823

graph.c 1,152

hippograph.ml 29

The end result

Plus

197 Test Scripts

156 Git Commits

2 Pies of Pizza

Language Overview

The Basics

● Operators:
○ + - * / ; = . > < => <= == and or not

● Control Flow:
○ While (true) {make_graphs();}
○ For (int i = 0; i <= 10; i = i + 1)
○ If (you_dont_mind()) { do_it(); } else { dont_bother(); }

■ The ELSE clause is optional!
● Primitive Types:

○ int, bool, string
● Comments:

○ (* don’t run me! *)

Function Flavors

The Standard:

return_type func_name(type1 arg1; type2 arg2; …) {
 …

 }

The Condensed:

fun<type1:type2: … :typek, ret_typ> f = ret_type (type1 …)(expr)

The Condensed Function

● Allow declarations of functions within the bodies of other functions
○ Stored in variables, which effectively provide the names of anonymous

functions
○ Fall in and out of scope with the function!

● Implemented as expressions which resolve to a FUN type

● Passing functions as first class data: WIP.

What about graphs?

● Node Expressions:

Node<t1:t2> = expr_of_t1 : expr_of_t2;
Node<t1:t2> = expr_of_t1;
Node<t1> = expr_of_t1;

● Graph Expressions:

Graph<int:bool, int> = [1:true <(5)> 3 <(3)- 8:true; 8 -(4)- 1];
Graph<int> = [1 <()> 3 <()- 8; 8 -()- 1];

Implementation

Architecture

Scanner Parser Semantic
Checker

Code
Generation

LLVM

Graph.c

Executable

Graphs

Implemented as
adjacency lists

Union primitive allowed for
flexible typing.

Under the hood, all edges
are directed. Non-directional
and bidirectional edges are
implemented as two
one-way edges.

Semantic Checking

graph<string:int, int> = [“A”:4 -(3)>
“B”:2 -()> “C”:22 <(1)> “A”];

A
4

B
2

3

C
22

1

Testing

For every new feature implemented, a small test was created to
ensure it worked as expected.

Demo

Bellman-Ford Algorithm

Initial Graph

 graph<string:int, int> g = ["S":500 -(10)> "A":500 -(2)> "C":500 -(2)> "B":500
-(1)> "A"; "S" -(8)>"E":500 -(1)> "D":500 -(1)>"C"; "D" -(4)> "A"];

A
500S

500
10

C
500

1

E
500

D
500

B
500

2

2

1

8

1

4

Shortest-path Graph

A
10

S
0

10

C
10

E
8

D
9

B
12

2

1

8

1

Negative Edge Weight Cycles in Graph

A
500

S
500

10

C
500

E
500

D
500

B
500

2

1

8

1

-7
1

4

Thank you!

Special thanks to our TA
Jennifer “codejen.ml” Bi!

