Fli/o: File Manipulation Language
Final Project Report

Matthew Chan (mac2474)
Justin Gross (jg3544)
Gideon Cheruiyot (gkc2112)
Eyob Tefera (et2546)

Fli/o Final Report

1 Introduction
1.1 Overview

1.2 Features

2 Language Tutorial
2.1 Environment Setup
2.2 Compiling
2.3 Sample Program

3 Language Reference Manual
3.1 Lexical Conventions
3.1.1 Tokens
3.1.2 Comments
3.1.3 Identifiers
3.1.4 Keywords
3.1.5 Literals
3.1.5.1 Integer Literal
3.1.5.2 String Literal
3.1.6 Separators
3.1.7 Operators
3.2 Types
3.3 Expressions
3.3.1 Parenthetical Expression
3.3.2 Function Call
3.3.3 Logical Not
3.3.4 Multiplication/Division Operators
3.3.5 Addition/Subtraction Operators
3.3.6 Relational Operators
3.3.7 Logical And
3.3.8 Logical Or
3.4 Statements
3.4.1 Expression Statement
3.4.2 Variable Declaration Statement
3.4.3 Return Statements
3.4.4 Block Statement
3.4.5 Control Flow Statements
3.4.5 Loops
3.4.6 Assignment Statement
3.5 Functions

3.5.1 Function Declaration

wh N W

N SN & &

O O v VYV VYV oo NN

e S S T e T e S e S S S S
A B N P W LW W W W O NN NN == -0 o O O

Fli/o Final Report

3.5.2 Function Structure
3.6 Built-in Functions
3.6.1 File-related
3.6.2 String-related
3.6.3 Miscellaneous
3.7 Scope

3.8 Grammar

4 Project Plan
4.1 Scheduling and Organization
4.2 Overview of Process
4.3 Style Guide
4.3.1 Indentation
4.3.2 Line width
4.3.3 Scoping (Curly Braces)
4.3.4 Spacing
4.3.5 Naming Conventions
4.4 Project Timeline
4.5 Team Roles
4.6 Development Environment
4.7 Project Log

5 Language Evolution

6 Architecture Design

6.1 Diagram

6.2 Compiler
6.2.1 your_program
6.2.2 Scanner
6.2.3 Parser
6.2.4 Abstract syntax tree (AST)
6.2.5 Static-semantic checker
6.2.6 Code Generation
6.2.7 Assembly
6.2.9 Linking
6.2.9 Executable

6.3 Contribution

7 Test Plan
7.1 Overview

7.2 Script Testing

15
15
15
16
17
17
17

19
19
20
20
20
21
21
21
22
22
22
23
23

23

25
25
25
25
26
26
26
26
26
27
27
27
27

27
27
28

Fli/o Final Report

7.3 Manual Testing
7.4 Responsibilities

8 Lessons Learned

8.1 General Conclusion

8.2 Personal Conclusions
8.2.1 Matthew’s Conclusion
8.2.2 Justin’s Conclusion
8.2.3 Gideon’s Conclusion

8.2.4 Eyob’s Conclusion

9 Appendix

9.1 Scanner

9.2 Parser

9.3 Abstract Syntax Tree
9.4 Static-semantic checker
9.5 Code Generation

9.6 Fli/o

9.7 Standard Library

9.8 Tests

9.8.1 Fail Tests

9.8.2 Success Tests

9.9 Demo

9.10 Miscellaneous

9.11 Git Log

29
30

30
30
31
31
31
32
32

32
32
34
37
40
45
54
55
63
63
65
70
71
74

Fli/o Final Report 5

1 Introduction

1.1 Overview

Fli/o was developed to create a seamless way to for users to interact with files, especially large
documents that require file or directory manipulation. To avoid the confusion around buffers and
input/output, we plan to allow users to open documents without having to worry about managing file
pointers and remembering to closing file streams. This design should increase the ease with which users
interact with files as a user just had to open them before proceeding to work with the file, no longer does
the user of our language have to do any file memory management aside for indicating which file they
want to work with in the first place. In short, we want to simplify the process of working with file I/O and
change it from a pain point to a hallmark of the language.

Furthermore, we want to give users the ability to process these files and do additional file
management operations on these files while keeping the 1/O process as simple as possible. Some
processing that users would be able to do include directory deletion, file manipulation, search and replace,
merging multiple files, splitting files, and easily appending to files. We also plan to include several file
management functions that users can build from in order to create custom file management processes that
simplify a user’s workflow. Our language will be written in OCaml and then compiled into LLVM code.

1.2 Features

Some key features of the language that we believe are worthy of highlighting have been listed below.
These are not all of the things that Fli/o supports but are only a few of some of the more interesting
features.

e Built-in file and directory types. In order to make the task of interacting with files easier, Fli/o
offers built-in file and directory types. These types are equivalent to the file and directory pointers
returned by google the C Standard Library fopen and opendir functions. By providing these types,
users can more easily and more intuitively interact with files via Fli/o’s standard library of
built-in functions.

e Built-in library for file operations. Fli/o provides numerous built-in functions to simplify the
process of working with files. Some of the functionality provided include: creating files, moving
files, copying files, deleting files, and reading and writing to and from files. The idea behind
providing these built-in functions is to easily allow users to implement bash-like functions
without having to worry about calling fork and exec (like in C).

Fli/o Final Report 6

2 Language Tutorial

2.1 Environment Setup

The Fli/o compiler requires an installation of OCaml (and dependencies like ocamlbuild/ocamlfind), a C
compiler (e.g. clang, gcc, cc) and LLVM to build the project.

2.2 Compiling

To compile and create a Fli/o program first you need to download the Fli/o tar folder, unzip it and then
open the directory that contains the unzipped files.

Once you are in the project root’s src directory, you can run make. This will build the source code for the
compiler and produce the executable flio.native.

To compile a program written in Fli/o, run the following commands from the src directory:

1. Output the LLVM IR to a .1l file

a. flio.native < your_program.f > your_program.ll
2. Compile it to assembly with llc

a. llc your_program.1l1l
3. Use clang to build the exe

a. clang your_program.s stdlib.o -o your_program
4. Run the executable file

a. ./your_program

2.3 Sample Program

Before we begin the language manual and detail all of the possibilities in the language I have included a
sample program demonstrates some of the file manipulation that is possible in Fli/o.

This program opens a file pointer to a file named “myfile.txt” in the current working directory and prints
out the contents of the entire file, line by line.

string filename = ‘myfile.txt’;
// Open the file for reading / writing

Fli/o Final Report 7

file f = fopen(filename);
string line = readLine(f);
// Read and print all lines from the line
for(; strcmp(line, “') '=0;;) {
prints(line);
line = readlLine(f);

3 Language Reference Manual

3.1 Lexical Conventions

3.1.1 Tokens

Tokens in our language can be categorized into five classes: identifiers, keywords, literals, operators, and
other separators.

Note: Individual tokens must be separated by whitespace (i.e. spaces, tabs or newlines).
3.1.2 Comments

The token for single-line comments consists of two forward slashes (“//’), and the comment terminates
with a newline character.

Please note that multi-line comments are not supported.
3.1.3 Identifiers

The characters which make up variable or function names, hence referred to as “identifiers”, must be in
the set of alphanumeric characters or must be an underscore character. Furthermore, identifiers must
begin with a letter (either uppercase or lowercase).

The regular expression which formally expresses these constraints is as follows:

['a'-'z" 'A'-'Z']['a'-'z" 'A'-'Z" '@'-'9" '_']x

Fli/o Final Report 8

3.1.4 Keywords

The following case-sensitive identifiers are reserved for use as keywords in Fli/o and may not be used
otherwise:

int, string file, dir, if, else, for, and, or, def, return

Keyword Description
int 32-bit signed integer
string string datatype
file file datatype

Note: Under the hood, this is represented by a file pointer.

dir directory datatype
if if-statement

else

for for-loop

Note: The syntax for for-loops differs slightly from the standard C-style syntax.
The third clause of a for-loop must also be followed by a semi-colon. Here is an
example:

for(int 1 =0; 1 <10; 1 =1+ 1;) {}

and A logical and, evaluates to true only if all operands for the and are true
or A logical or, evaluates to true if any operand for the or is true

not A logical not, negates the operand that it is attached to

def A keyword used to defining a function

return Keyword that defines the returned value of a function

Fli/o Final Report 9

3.1.5 Literals

3.1.5.1 Integer Literal

An integer constant consisting of a sequence of digits that is expressed strictly in decimal notation and 32
bit in size with the initial bit indicating sign.

3.1.5.2 String Literal

String literals must be surrounded by single-quotes, as in ‘hello world’.

3.1.6 Separators

As with C-style syntax, instructions are separated by semicolons. Furthermore, curly braces are used to
define scope and parentheses are used either to explicitly specify order of operations or invoke a function
call.

3.1.7 Operators

Below is a list of the operators provided in Fli/o. Please note that these operators are not overloaded and
hence only work on integer types.

Operator Description

+ Addition operator

- Subtraction operator

* Multiplication operator
/ Division operator

> Greater than operator
< Less than operator
== Equality operator

I= Non-equality operator

Fli/o Final Report 10

3.2 Types
Keyword Description
int 32-bit signed integer
string string datatype
String literals must be surrounded by single-quotes. The underlying data is

represented as an array of characters.

file file datatype
Files are represented by a file pointer.

dir directory datatype

Directories are represented by a directory pointer.

3.3 Expressions

Expressions are sequences of one or more tokens that have a value. Identifiers and literals are also
expressions by this definition. The precedence of these expressions beyond the base literals and identifiers
is listed in order below from highest to least except where explicitly noted. Operators described in the
same section are closely related and share the same precedence

3.3.1 Parenthetical Expression

Notation: (expression)

A simple expression that takes the value of the interior of the parentheses. Used to express the highest
precedence amongst expressions.

3.3.2 Function Call

Notation: identifier(arguments)

Fli/o Final Report 11

A function call is consists of an identifier, which is the name of the function, followed by a sequence of
zero or more arguments enclosed by parentheses. Function calls pass their arguments by value. The value
of the function call itself is of the return type specified in the function declaration with the value of the
expression within the return statement. Function calls are left to right associative.

3.3.3 Logical Not

Notation: NOT expression

The not operator expresses logical negation using the keyword not. The expression must of integer type.
If the value is not 0, the resulting value from the expression is 0, and if the value is 0, the resulting value
is 1. The operator is right to left associative.

3.3.4 Multiplication/Division Operators

Notation:
expression * expression
expression / expression

These are the two basic multiplicative operators. The two expressions on both sides must be of the
integer type. The times operator * denotes multiplication and the evaluation of the expression is the
integer that results from multiplying the two. Similarly the divide operator / denotes division and the
evaluation of the expression gives the resulting value of the truncated integer quotient. If the second
operand in the division operation is 0, the result is undefined. The operators are left to right associative.

3.3.5 Addition/Subtraction Operators

Notation:
expression + expression
expression - expression

These are the two basic additive operators. The two expressions on both sides must be of the integer type.
The plus operator + denotes addition and the evaluation of the expression is the integer that sum of adding
the two. Similarly the minus operator - denotes subtraction and the evaluation of the expression results in
the integer difference. The operators are left to right associative.

Fli/o Final Report 12

3.3.6 Relational Operators

Notation:
expression < expression
expression > expression
expression == expression
expression != expression

These are the two basic relational operators greater than >, less than <, equals to ==, and not equals !=.

The two expressions on both sides must be of the integer type. If the specified relation is true, the
resulting value is an integer, 1, and 0, if false. The operators are left to right associative.

3.3.7 Logical And

Notation: expression AND expression

The and operator expresses logical and using the keyword and. The expressions must be integers. If the
values of both expressions are not equal to zero, the resulting value from the expression is 1, and if the
one of the values is zero, the resulting value is 0. The operation is left to right associative and if the left
hand side is evaluated to 0, it does not evaluate the right hand side already knowing the result is 0.

3.3.8 Logical Or

Notation: expression OR expression

The or operator expresses logical or using the keyword or. The expressions must be integers. If the
values of one of the expressions are not equal to zero, the resulting value from the expression is 1, and
only if both of the values are zero, is the resulting value 0. The operation is left to right associative and if
the left hand side is evaluated to 1, it does not evaluate the right hand side already knowing the result is 1.

3.4 Statements

These statements are executed in sequence and contain no inherent value. Most statements are terminated
using a semicolon. The following subsections describe how different statements can be expressed.

Fli/o Final Report 13

3.4.1 Expression Statement

Notation: expression;

The most basic statement is a standalone expression.
3.4.2 Variable Declaration Statement

Notation:
type identifier;
type identifier=expression;

These statements indicate the declaration of variables. The first form represents declaration without
initializing whereas the second represents declaration and initialization.

3.4.3 Return Statements

Notation:
return expression;
return ;

Return statements must be placed inside of a function and must match the return type as specified in the
function declaration.

3.4.4 Block Statement

Notation: {statement list}

This statement indicates grouping and limiting of scope. It is a series of 1 or more statements enclosed by
curly braces. Any identifiers declared within a statement like this can not be used in statements outside of
the block statement.

3.4.5 Control Flow Statements

Notation:
if (expression) statement
if (expression) statement else statement

Fli/o Final Report 14

The control flow statements listed above allow for different statements to be optionally executed. If the
first expression, which must be an integer, evaluates to not 0, the first statement executes in all forms. The
other forms indicate differently other statements to take and what conditions must be true to take them.

If the preceding if expression is not evaluated to be non-0, then, if there is an else, the following final
statement is executed.

3.4.5 Loops

Notation: for (statement opt; expression_opt; statement _opt;) statement
These is one form of iterative statements:

In the for statement, the first statement is evaluated once, and thus specifies initialization for the loop.
There is no restriction on its type. The second expression must be integer type, it is evaluated before each
iteration, and if it becomes equal to 0, the for is terminated. The third expression is evaluated after each
iteration, and thus specifies a reinitialization for the loop. There is no restriction on its type. Side-effects
from each expression are completed immediately after its evaluation. Any of the three expressions may be
dropped. A missing second expression makes the implied test equivalent to non-0 and thus always true.

3.4.6 Assignment Statement

Notation:
identifier=expression;

The expression must match the type of the identifier. Strings are literal values, so each time they are
changed, new string is created. Files and dicts are references to larger structured types and so merely
assign the identifier the old reference value. In particular, files and directories must be opened by fopen
and dopen, respectively, though the structure referred to by a specific identifier may freely change.

3.5 Functions
3.5.1 Function Declaration

Notation: def identifier (params) type opt {statement list}

A function can be declared anywhere within a function (besides within another function or statement
block). It is indicated that this is a function and the first declaration of such by the def (define) keyword.
It is then followed by the identifier that names the function and then a series of comma-delimited
parameters (0 or more) that are enclosed by parentheses. Each parameter consists of a type and a local
identifier to be used in the function. After the parameters, there may be a type. This type is the return

Fli/o Final Report 15

type of the function. Finally, there are braces that surround the series of statements that make up the
function itself.

3.5.2 Function Structure

Each function is passed its arguments by value (though the value of directories and files are references).
The arguments included in the function call must match the types and order of the parameters listed in the
function declaration. The return type of the function indicates if there need be return statements; a return
type requires that a return statement with an expression of the correct type end all possible functions.
Alternatively, lack of a return type means that there need not be a return statement in the function, though
any return types must be of the second form listed in 3.4.3.

3.6 Built-in Functions

3.6.1 File-related

Below is a list of built-in functions related to manipulating files.

Name

Function Signature

Description

fopen

file fopen(string fpath)

Open a file pointer to the file at
file path fpath

create

int create(string fname)

Create a new empty file with
name fhame

Returns a negative value if the
write failed, otherwise returns a
non-negative value.

move

int move(string fp1, string {p2)

Move the file at file path fp! to
the location fp2

Returns a negative value if the
write failed, otherwise returns a
non-negative value.

copy

int copy(string f1, string {2)

Copy the file at file path fp/ to
the location fp2

Returns a negative value if the
write failed, otherwise returns a
non-negative value.

Fli/o Final Report

16

delete

int delete(string fname)

Delete the file fname

Returns a negative value if the
write failed, otherwise returns a
non-negative value.

write

int write(file f, string buf)

Write the string buf to the file f.

Returns a negative value if the
write failed, otherwise returns a
non-negative value.

read

string read(file f, int len)

Read and return /en characters
from f

readLine

string readLine(file f)

Read up until a newline
character is encountered in f'and
return a string containing that
line

appendString

int appendString(file f, string buf)

Append bufto the end of

Returns a negative value if the
write failed, otherwise returns a
non-negative value.

3.6.2 String-related

Below is a list of built-in functions related to strings:

Name Function Signature Description

prints void prints(string s) Print s to stdout

concat string concat(string s1, string s2) Concatenate two strings, returning
the concatenated version

stremp int stremp(string s1, string s2) Compares s/ to s2

Returns a negative value if s7 <s2
Returns a positive value if s/ > s2

Returns zero if s/ == s2

Fli/o Final Report 17

intToStr string intToStr(int 1) Returns i as a string

3.6.3 Miscellaneous

Name Function Signature Description
print void print(int 1) Print i to stdout
dopen dir dopen(string path) Open a directory pointer to path
rmdir int rmdir(string path) Remove the directory located at
path

Returns a negative value if the
write failed, otherwise returns a
non-negative value.

3.7 Scope

Local scope is defined to be any series of statements enclosed by {}, whether it be in a function or a
general block statement. Any string and integer type variables are limited to their local scope, if it exists,
and may not be referred to outside of their scope. In particular, files and directory types are not closed
even if the identifiers are local to the scope of a function and persist until the program quits, wherein these
types are closed. Strings and ints do not persist outside of their scope. In general, scoping is otherwise
very similar to that of C.

3.8 Grammar

The grammar of Fli/o, as defined by our parser, is as follows:

program:
decls EOF

decls:

€
| decls fdecl
| decls stmt

Fli/o Final Report 18

/* Function declaration / definition =*/
fdecl:
DEF ID(params) typ_opt {stmt_list}

params:
€
| paramlist

paramlist:
typ ID
| paramlist, typ ID

args:
€
| arglist
arglist:
expr
| arglist COMMA expr

/* Statements */

stmt_opt:
SEQUENCING

| stmt

stmt_list:
€
| stmt_list stmt

stmt:
expr SEQUENCING
| vdecl_stmt
| ID = expr;
| RETURN expr;
| RETURN;
| [stmt_list]
| FOR(stmt_opt expr_opt ; stmt_opt) stmt
| IF(expr) stmt %prec NOELSE
| IF(expr) stmt ELSE stmt
vdecl_stmt:
typ ID;
| typ ID = expr;

Fli/o Final Report

/* Expressions */
expr_opt:

€
| expr

expr:
INTLIT
STRINGLIT
ID
ID(args) %prec CALL
expr + expr
expr - expr

expr * expr
expr / expr

< expr
expr > expr
expr == expr
expr != expr

|
|
|
|
|
|
|
|
| expr
|
|
|
| expr AND expr
| expr OR expr
| NOT expr
| -expr %prec NEG
typ_opt:
€

| typ

typ:
INT
| STRING
| FILE
| DIR

4 Project Plan

4.1 Scheduling and Organization

Throughout the semester we had a group Facebook message that we used as our primary mode of
communication. Whenever there was some complication or confusion we quickly settled the issue

Fli/o Final Report 20

through this group chat. We met 1-2 times a week throughout the semester once with our IA John at
minimum unless we were on break or had a clear idea of what had to be done next in the project. During
the beginning of the project we would meet multiple times a week to iron out the design of our language
near deadlines we would also meet more often. However some weeks where we still be continuing on the
things we were working on the previous week we would not have a meeting.

To do the planning and to complete the written portions of the final project we used Google Docs so we
could all work on the same documentations and easily and seamlessly collaborate with one another. This
worked exceptionally well because we could start a messenger group call, work on the same document
together and then quickly complete the task.

We also used GitHub as tool for version control, we had a master branch and a development branch. To
ensure that the master branch was always working any changes to the master branch must be verified by
another member in the group. So someone would submit a pull request with their personal branch to the
master and then have it be approved by one other person and then it would become the new master
branch. The development branch was to used a working copy where people would send broken or
partially functional code where it could get a second look at for testing or for other developmental
purposes.

4.2 Overview of Process

To complete the project we followed the schedule of deliverables as outlined at the beginning of the class.
We first focused on the proposal, then the LRM and parser, then the Hello World Demo, and then
completing the project and creating the final report. We found this to be the easiest way to complete the
project as it gave us a clear timeline on when each deliverable should be completed. We began by first
assigning the four roles as seen in section 4.2 to each of the members in the group. We then brain stormed
several ideas for our language before settling on the idea of a file manipulation idea which became the
language Fli/o as we developed it over time. From there we would start working on new parts of the
project in accordance to people’s roles and what people’s areas of interests are. Which again is is
displayed in the chart in 4.2 of team responsibilities. Once we complete the Language Reference Manual
and parser work became less collaborative as people were all working on their own separate sections of
the project, which is how we worked until the programming language was actually completed.

4.3 Style Guide
4.3.1 Indentation

Similar to Linux conventions, tabs should be 8 characters wide. Having this spacing makes identifying
scope from indentation less difficult.

Fli/o Final Report 21

When doing pattern matching in OCaml, use indentation to line up the return values. This makes the code
more readable.

4.3.2 Line width

Inspired again by Linux kernel conventions, lines should not run over 80 characters in width so as to
make source code more readable. Having lines run over 80 characters often requires that the text wrap
onto another line, which is not ideal.

4.3.3 Scoping (Curly Braces)

Function definitions should start on a new line from the function declaration. That is to say, after
declaring a function, the opening curly brace indicating the start of the function definition should fall on
the next line.

def myfunc(int a) int
{

// Your code here..
However, for statements like for-loops and if-statements, the opening curly brace should fall on the same
line. For example,

for (int 1 =0; 1 <10; i =1+ 1;) {
// Do stuff..

4.3.4 Spacing

In most cases, spaces should follow keywords and variable names. Additionally, spaces should surround
binary operators such as +, -, /, *.

However, when performing function calls, there should be no padding inside the parentheses, nor should
there be spacing between the function name and the opening parenthesis.

Fli/o Final Report 22

(* Do not do this *)
String.concat “” (String.uppercase “hello”)

(* Do this *)
String.concat

“wn

(String.uppercase “hello”);

4.3.5 Naming Conventions

Use camel case rather than underscores when naming variables.

Additionally, variable names should begin with a lowercase letter. However, for constant global variables,
please use all caps.

Lastly, when possible, try to use shorter variable names. For example, use cntr over numberCounter.

4.4 Project Timeline

Deliverable Notes Deadline

Project Proposal Met up to allocate team roles September 19
and brainstorm project ideas

Language Reference Manual Completed scanner, parser and October 15
Scanner, Parser the abstract syntax tree before
this deadline
Hello World Implemented static semantic November 14

checking, testing, and the
framework for code generation
in time for this deadline

Project Presentation Built a slide deck and December 17
presentation
Final Project All components of the project December 19

are complete

4.5 Team Roles

Fli/o Final Report 23

Member Role Responsibilities
Eyob Tefera Language Guru Codegen, final report,
presentation, testing
Justin Gross System Architect LRM, language design, Final
Report
Gideon Cheruiyot Tester Testing, LRM, Final Report
Matthew Chan Manager Scanner, parser, AST,

static-semantic checker,
codegen, built-in library, tests,
Makefiles & scripts, LRM, final
report, presentation

4.6 Development Environment

To ensure that the project worked for every we used the Linux virtual machine that John, our TA, set up
for us and the class. The VM included all possible languages, compilers, and tools that we could possibly
need such as GCC, ocamlyacc, ocammlex, git, vim, LLVM, menhir, ocamlfmt, and more. This allowed us
to all have access to the same tools and environments and avoid problems that could stem from different
environments (Windows vs Mac) which would shift our focus away from our implementation of the
language, so the singular native platform helped avoid this issue.

4.7 Project Log

The git log for this project is located at the very end of the Appendix (Section 9.11).

5 Language Evolution

During the early stage of the project our group quickly selected upon two different languages, one that is a
string manipulation language and another language that is centered around file management. We at first
decided to combine these ideas because we felt that both of these ideas were fairly interesting and were
something that we believe to be fairly interlinked. As a result on our first iteration of our project proposal
we wrote both of these ideas into the language and meant then both equal focuses of our language.

Fli/o Final Report 24

However after receiving feedback from the TAs and Professor we released that having a language that
focused on both would not only be difficult to implement in the time span that we were given, but we
would be better served from focusing on one of these subjects rather than both. Furthermore, we were also
given that insight that it would be easy to create or link in a library for doing some of the string processing
that we had envisioned and it wasn’t necessarily necessary to develop a language complete around string
processing. So we settled on the idea of a file manipulation language. For the second proposal feedback
we removed some of the ideas about string processing and decided that if that was direction we wanted to
go in the future we would work with some external library to accomplish that.

In terms of our focus as a file manipulation language we decided to add more built-in methods for file
manipulation and we decided to take from cues from command lines languages such as bash by adding in
the pipe operator to mimic some of the already existing command file manipulation actions. Furthermore
we decided to remove the ability to import libraries because we felt that it distracted from our new
primary purpose as a file manipulation language. Thus through this iterative design process the language
known as Fli/o was born.

Fli/o Final Report 25

6 Architecture Design

6.1 Diagram
your_program semant Clang
scanner sast
parser codegen
el LLVM IR

6.2 Compiler
6.2.1 your program

In the pipeline depicted above, your program is meant to represent the program one would write in Fli/o.
Furthermore, this represents the file that someone is attempting to compile when they run -c on the top
level.

Fli/o Final Report 26

6.2.2 Scanner

The scanner reads your program and performs the lexical analysis. It treats your program as a large
string of characters and then tokenizes it using the tokens previously mentioned in Section 3.1.1.

If your_program has illegal characters, the compilation will fail at this point. Otherwise, all the tokens are
passed into the parser.

6.2.3 Parser

The parser uses the tokens passed in by the scanner and tries to construct an abstract syntax tree. The goal
of the parser is to make sure that there are no grammatical errors present in the program. If any are
detected, then the parser will fail at this stage. Otherwise, the parser successfully generates the AST.

6.2.4 Abstract syntax tree (AST)

The AST is the abstract syntax tree created by the parser. Once the Ast is created it is then passed in to the
semantic checker where the AST is to be determined semantically valid or not.

The abstract syntax tree is a concise way of representing the source code which will be traversed by the
static-semantic checker in the next phase.

6.2.5 Static-semantic checker

The static-semantic checker walks through the abstract syntax tree, checking for potential syntax errors
such as type and scope errors. For instance, the semantic checker looks for whether variables exist when
they are referenced.

If the semantic checker identifies any syntax errors, then the compilation fails here. Otherwise, the now
semantically checked AST is ready for the next stage of the compilation process.

6.2.6 Code Generation

The code generation script traverses the AST to generate LLVM code, which is a register-based
intermediate representation that looks similar to Assembly. We are compiling to LLVM for this project
because it can easily be compiled into code that will run on any system architecture.

Fli/o Final Report 27

Note: Code generation should not fail, as all parser and syntax errors will be caught before this stage.

6.2.7 Assembly

Now that we have the LLVM intermediate representation of your program, we can convert this into
Assembly using LLC, LLVM’s static compiler.

6.2.9 Linking

At this point, all we need is to convert our Assembly source code into an executable, while also
remembering to link in Fli/o’s standard library of built-in functions. For this purpose, you can use
compilers like clang or gcc.

6.2.9 Executable

Compilation is now complete and the generated executable is ready to be run.

6.3 Contribution

All source code relating to the front-end and back-end of the compiler (i.e. scanner, parser, abstract syntax
tree, static-semantic checker, code generator, standard library) was written by Matthew Chan.

7 Test Plan

7.1 Overview

We employed two different methods for testing the compiler. The first of which was creating a script that
runs a bunch of unit tests on the various aspects of the language. This would ensure that as features were
developed and added to the language that the features we already created were not broken by a subsequent
change to the language. These tests ranged from extremely basic tests of a couple lines that merely did
simple addition to longer tests that integrated multiple aspects of the language. We also did manual testing
by creating executables and ensuring that the output of a program matched the output that we expected.
This ensured that features not only continued to work but also worked as intended.

Fli/o Final Report 28

Here are two examples of the outputted Assembly code that is generated from a source Fli/o script. The
first script demonstrates looping and conditionals, while the second script demonstrates file operations via
built-in functions.

b

else { cfi_startproc

prints(# %bb.0
pushg %rbp

Cwrls
%rld
%r13

p2align
5

callg printfePLT
(srbx)
$9, (%rbx)
.LBBO_7

empl $5, (%rbx)
ig -LBBO_4

.LBBO_4

xorl %eax, %eax
movq %rl2, %rd
movq

2align
../test/test-if.f

i/ test-copyfile.f

file f = fopen(filename);
fcopy (filename, copynane);

delete (filename);
ldelete (copyname) ;

create@PLT
Lstrptr.1(%rip), %rax
%rax, 8(%rsp)
movq (%rsp), %rdi
leaq Lnode (%rip)
1

callg

movq

movq

movq (%rsp), %rdi
callg copy@PLT

main, .Lfunc_end0-main
endproc
function
Lstrptr,@bject #
n rodata.strl.1,”

"myfile.
Lstrptr,

Lstrptr.1,@object

.Lmode, @object

r+
.Lmode,

.section

../test/test-copyfile.t B ALL test-copvfile.s

7.2 Script Testing

This is an example of us calling the test-suite during development and seeing tests pass and fail, this
alerted us to what our changes broke and what needs to be fixed. In this case all of our tests passed once

Fli/o Final Report 29

we have made a change so know that we can continue working on new features because we did not
damage the existing code.

The test cases for automated tested were selected primarily to test features of the language while they
were being added. So for instance, there are tests corresponding to each built-in function of the language,
as well as tests for keywords of the language.

Additionally, there were tests checking for syntactic errors including scoping and typing errors.

[plt/fliofsrcS .ftestall.sh
wu o DK
test-concat...0OK
test-copyfile...OK
test-createfile...OK
test-decl2...0K
test-fcall2...OK
test-fcall...0K
test-fdecl2...OK
test-fdecl...OK
test-for...0K
test-helleo2...0K
test-hello...0K
test-if...0K
test-logic...0K
test-movefile...OK
test-number...0K
test-readfile...test-rmdir...0K
. 0K

fail-assign...OK
fail-fdeclz...OK
fail-fdecl3...0K
fail-fdecl...OK
fail-for...0K
fail-hello...0K
fail-if...0K
fail-return...0K
fail-scope...OK
fail-types...OK

7.3 Manual Testing

Manual testing occurred mostly when testing new features as they were implemented as whenever a new
feature worked we wanted to ensure that a new feature not only worked but could interact with other
features of the language without breaking them. We would manually test something to verify that it works
before adding a test for a feature in the test suite. The test suite test would either be the same or a slightly
modified version of the manually tested version. Below is an example of making sure that standard library
functions work with string and file types. We would also change inputs and values to ensure that the code
is valid not just for one input by for any input.

Fli/o Final Report 30

string filename =
string newname =
file f = filename;

move(filename, newname);

delete(newname);

7.4 Responsibilities

The automated testing script (testall.sh) as well the majority of the test scripts were written by Matthew
Chan.

Additional test scripts were provided by Gideon Cheruiyot.

8 Lessons Learned

8.1 General Conclusion

Of the general sentiments that the group had there were quite a few that the group held in common. In
terms of the project itself and the experience we had while working on it, every viewed it as extremely
rewarding and insightful. We all have experiences with multiple different programming languages but
none of us have either actually put one together so being able to break down what a programming
language consists of and build one ourselves was again an amazing experience. In hindsight we may have
chosen to focus on a single idea earlier rather than trying to combine multiple ideas in the early stages of
the project the ideas at times got jumbled together and ran into one another. Also instead of everyone
being assigned a portion of the compiler (ast, semant, codegen, etc..) we should have split the assignments
into functionality rather than part of the compiler, some parts of the compiler were far more complicated
than others and required more work. At first we didn’t realize this so the workload was rather uneven but
we tried to even it out over time. In hindsight work would should be assigned over time in small
digestible portions than assigning entire portions of the project fool harditly. Aside from that I think we
are all happy with the way that the language turned out implemented everything we had originally
planned to do with the exception of pipe statements and imports. Building a language from scratch is
rather difficult but it builds a lot of insight into how a language is written which in the future should

Fli/o Final Report 31

hopefully make us better software architectures since we now have a strong understanding of how the
programming languages we use work, which should hopefully translate into the other languages we use.

8.2 Personal Conclusions

While the general conclusion was the section where we shared our thoughts about the project that we held
in common this section is for our personal thoughts.

8.2.1 Matthew’s Conclusion

After working on this project, I feel that I have gained a strong and intimate understanding of how
programming languages and compilers work, both in theory and in practice. Seeing as how programming
languages are the platform on which we build software, I find this knowledge crucial to my education in
Computer Science.

As advice to other groups, I would suggest explicitly defining the core features of your language during
the initial brainstorming phase and focus solely on implementing that feature. When I say this, I mean that
all other features should be ignored and your language should be stripped down to its barebones in favor
of implementing the core feature. In our case, the direction and purpose of our language got muddled
during the planning phase due to over-ambition in what features we could implement.

As a last point of advice, I would also suggest concretely dividing up roles and assignments. Each
member should take part in developing all portions of the compiler source code, so it would be a good
idea to convey this notion early on. Otherwise one teammate is likely to end up writing the entire
compiler and carrying most of the onus to meet the project deadlines.

8.2.2 Justin’s Conclusion

I did enjoy working on the project and I certainly have a much better understanding of programming
languages and how they work. It also gave me an appreciation for functional languages and how they can
be used and why OCaml works well for making compilers.

I do feel that communication could have been a lot better in our group. While there was communication
about what needed to happen to meet deadlines and who was working on what, communication outside of
that was very limited. Communication on whether people needed help on certain parts and
communication on whether communication on project direction outside of meetings were both somewhat
neglected. It ultimately resulted in certain members claiming parts of the project and left much less room
for collaboration. This made integration of parts more difficult and certain features were unable to be
implemented in the final project. More meetings or, preferably, more regular communication about what
was being done and why is really necessary to make the project run more smoothly.

Fli/o Final Report 32

8.2.3 Gideon’s Conclusion

All in all, I feel like the long semester project was a great learning experience about how languages work.
Starting off, the project idea we had was really optimistic and i think our TA really helped us narrow
down on how to make Flio unique and better.

Personally, I feel like I would have reached out to our TA John regarding some difficulties I had while
writing some components of the project like the testall.sh. More so, due to the bulk of the project, a great
relationship with teammates early on is definitely helpful so as to understand each other’s progress and to
ask for help or clarification.

The challenging part of the project was collaboration since we could have done much better to help each
other fix errors in our parts rather than overlapping in terms of work delegation.

8.2.4 Eyob’s Conclusion

Overall, I would have to agree with the general consensus that we had around the project. I felt that the
project went rather well, it had most of everything that we wanted to include in it. Yet if [had the
opportunity to take the class again or in the future to design another programming language I think I
might have chosen a mathematics based language, perhaps something similar to matlab. While working
on the codegen section of the project there were a lot of interesting LLVM constructs that would lend
themselves to being applied in a mathematical language. I think that creating built in matrix types and
building a language that has the base functionality that the module numpy provides for python would
have been really interesting as it would’ve given us the ability to use a lot of those LLVM constructs. I
think there would have been a lot of conversion and interesting instances of typing matching or type
conversion as well as size and array dimension conversions that would have made some type of numerical
programming language interesting. Aside from maybe trying to build a different programming language,
which is more of a retrospective than deeply held belief, I am extremely satisfied with the project and how
it turned out.

9 Appendix

9.1 Scanner

src/scanner.mll
01: (*
02: scanner.mll

Fli/o Final Report

03: Author: Matthew Chan

04: *)

05:

06: { open Parser }

a7:

08: rule token = parse

09: [" " '\t" '\r'" "\n'] { token lexbuf }
10: (* Types *)

11: | "int" { INT }
12: | "string" { STRING }
13: | "file" { FILE }
14: | "dir" { DIR }
15: (* Function keywords *)

16: | "def" { DEF }
17: | "return" { RETURN }
18: (* Loops and conditionals *)

19: | "for" { FOR }
20: | "in" { IN }

21: | "if" { IF }

22:. | "else" { ELSE }
23: (* Misc *)

24: | "//" { comment lexbuf }
25: | (" { LPAREN }
26: | ') { RPAREN }
27: | '{" { LBRACE }
28: | '} { RBRACE }
20: | '[" { LBRACK }
30: | '] { RBRACK }
31: | ', { COMMA }
32: | ' { SEQUENCING }
33: (* Operators *)

34: | '+ { PLUS }
35: | '-' { MINUS }
36: | '*' { TIMES }
37: | '/ { DIVIDE }
38: | '>' { GT }

39: | '<' { LT }

40: | "==" { EQ }

41: | "1=" { NEQ }
42 . | "and" { AND }
43: | "or" { OR }

44: | '=" { ASSIGNMENT }
45: | "not" { NOT }

Fli/o Final Report 34

46: (* Literalsx)

47: | ['0'-'9']+ as 1lit { INTLIT(int_of_string 1lit) }

48: | '\"'"([*'\"']* as string_lit)"'\"’ { STRINGLIT(string_lit) }
49: | ['a'-'z" 'A'-'Z']['a'-'z" 'A'-'Z' '0'-'9' '_']* as id { ID(id) }
50:

51: | eof { EOF }

52:

53: and comment = parse

54 : ‘\n’ { token lexbuf }

55: | _ { comment lexbuf }

9.2 Parser

src/parser.mll

001: /*

002 : parser.mly

003 : Author: Matthew Chan

004: *x/

005:

006: %{ open Ast %}

007:

008: %token EOF LBRACE RBRACE LPAREN RPAREN LBRACK RBRACK COMMA
SEQUENCING

009: %token INT STRING FILE DIR
010: %token PLUS MINUS TIMES DIVIDE ASSIGNMENT
011: %token GT LT EQ NEQ NOT AND OR
012: %token DEF RETURN

013: %token FOR IN IF ELSE

014: %token <int> INTLIT

015: %token <string> STRINGLIT

016: %token <string> ID

017:

018: %nonassoc NOELSE

019: %nonassoc ELSE

020: %right ASSIGNMENT

021: %left CALL

022: %left OR

023: %left AND

024: // %left SEQUENCING

025: %left EQ NEQ

026: %left LT GT

Fli/o Final Report

027: %left PLUS MINUS

028: %left TIMES DIVIDE

029: %right NOT NEG

030:

031: %start program

032: %type <Ast.program> program
033:

034: %%

035:

036: /* { funcs: [<fdecl>]; stmts: [<stmt>] } */
037: program:-

35

038: decls EOF { {funcs = $1.funcs; stmts = List.rev $1.stmts}

}
039:

040: decls:

041: { {funcs = []; stmts = []} }

042: | decls fdecl { {funcs = (82 :: $1.funcs); stmts = $1.stmts}
043: | decls stmt { {funcs = $1.funcs; stmts = (82 :: S$1.stmts)}
044 .

045:

046: /* Function declaration / definition =*/

047 : fdecl:

048 DEF ID LPAREN params RPAREN typ_opt LBRACE stmt_list RBRACE

{ {typ = $6; fname = $2; params = $4; body = List.rev $8} }

049 :

050: params:

051: {[]}

052: | paramlist{ List.rev $1 }

053

054: paramlist:

055: typ ID { (81, $2)1 }
056: | paramlist COMMA typ ID { ($3, $4) :: 81}
057

058:

059: args:

060 {[1}

061: | arglist { List.rev $1 }

062 :

063: arglist:

064 : expr { [$1] }

065: | arglist COMMA expr { 83 :: 81 }

066 :

067: /* Statements */

}
}

Fli/o Final Report

068 :
069 :
070:
071:
072 :
073 :
074 :
075:
076
077
078:
079:
080 :
081:
082 :
083 :

084 :

LBRACE stmt_list RBRACE { Block(List.rev $2) }
FOR LPAREN stmt_opt expr_opt SEQUENCING stmt_opt RPAREN stmt
{ For($83, $4, $6, $8) }
| IF LPAREN expr RPAREN stmt %prec NOELSE

36

stmt_opt:

SEQUENCING { Nostmt }
| stmt {81}
stmt_list:

{1}

| stmt_list stmt {$2 :: 81}
stmt:

expr SEQUENCING { Expr(81)
| vdecl_stmt { $1 }
| asn_stmt { $1 }
| RETURN expr SEQUENCING { Return($2)
| RETURN SEQUENCING { Return(Noexpr) }
|
|

{ If($3, $5, Block([])) }

085:
086 :
087:
088:
089:
090:
091 :
092:
093:

| IF LPAREN expr RPAREN stmt ELSE stmt { If($3, S5, $§7) }

vdecl_stmt:
typ ID SEQUENCING { VarDecl($1, $2) }
| typ ID ASSIGNMENT expr SEQUENCING { VarDeclAsn($1, $2, $4) }

asn_stmt:
ID ASSIGNMENT expr SEQUENCING

{ Asn($1, $3) }

094 :

| ID LBRACK expr RBRACK ASSIGNMENT expr SEQUENCING

{ Asn($1, $3) }

095:
096 :
097:
098:
099
100:
101:
102 :
103:
104 :
105:
106 :

/* Expressions */

expr_opt:
{ Noexpr }
| expr {81}
expr:
| INTLIT { IntLit($1)
| STRINGLIT { StringLit($1) }
| ID { Id($1)
| ID LPAREN args RPAREN %prec CALL { FuncCall($1, $3) }
|

expr PLUS expr { Binop($1, Add, $3) }

Fli/o Final Report 37

107: | expr MINUS expr { Binop($1, Sub, $3) }
108: | expr TIMES expr { Binop($1, Mul, S$3) }
109: | expr DIVIDE expr { Binop($1, Div, $3) }
110: | expr LT expr { Binop(S$1, Lt, $3) }
111: | expr GT expr { Binop($1, Gt, $3) }
112: | expr EQ expr { Binop($1, Eq, $3) }
113: | expr NEQ expr { Binop(S$1, Neq, $3) }
114: | expr AND expr { Binop($1, And, $3) }
115: | expr OR expr { Binop($1, Or, $3) }
116: | NOT expr { Uop(Not, $2) }

117: // | MINUS expr %prec NEG { Uop(Neg, $2) }

118:

119: /* Types */

120: typ_opt:

121: { Void }
122: | typ { $1 }

123:

124: typ:

125: INT { Int }
126: | STRING { String }
127: | FILE { File }
128: | DIR { Dir }

9.3 Abstract Syntax Tree

src/ast.ml

001: (=*

002 : ast.ml

003 : Author: Matthew Chan

004 : *)

005:

006: type operator = Add | Sub | Mul | Div | Gt | Lt | Eq | Neq | And
| Or

007 :

008: type uoperator = Neg | Not

009 :

010: type typ = Int | String | File | Dir | Void
011:

012: (* Statements can be expressions or local var declarations x)
013: type param = typ * string
014:

Fli/o Final Report 38

015: (* Expressions are assignment and basic operations =*)
016: type expr =
017: Noexpr

018: Binop of expr * operator * expr
019: Uop of uoperator * expr
020: IntLit of int

I
|
I
021: | StringlLit of string
I
|

022: Id of string
023: FuncCall of string * expr list
024:

025: type stmt =
026: Nostmt

027: | Block of stmt list

028: | Expr of expr

029: | VarDecl of typ * string

030: | VarDeclAsn of typ * string * expr
031: | Asn of string * expr

032: | Return of expr

033: | For of stmt * expr * stmt * stmt
034: | If of expr * stmt * stmt

035:

036:

037: (* Functions have a return type, name, argument list, and body of
statements %)

038: type fdecl = {

039: typ: typ;

040: fname: string;

041: params: param list;

042: body: stmt list;

043: }

044 :

045: (* Program is composed of functions and statements *)
046: type program = {

047 : funcs: fdecl list;

048: stmts: stmt list;

049: }

050:

051: (* Pretty printing functions *)
052: let string_of_op = function
053: Add -> "+"

054: | Sub -> "-"

055: | Mul -> "=*"

056: | Div -> "/"

Fli/o Final Report 39

057: | Eq -> "=="

058: | Neq -> "I="

059: | Lt -> "<"

060: | Gt -> ">"

061: | And -> "and"

062: | Or -> "or"

063:

064: let string_of_uop = function
065: Neg -> "-"

066: | Not -> "I"

067:

068: let string_of_typ = function

069 : Int -> "int"

070: | Void -> "void"
071: | String -> "string"
072: | File -> "file"
073: | Dir -> "dir"

074:

075: let rec string_of_expr = function

076 : IntLit(l) -> string_of_int 1

077: | StringLit(l) -> 1

078: | Id(s) -> s

079: | Binop(el, op, €2) -> let lhs = string_of_expr el and rhs =
string_of_expr e2 in

080: (lhs ~ " " A string_of_op op » " " * rhs)
081: | Uop(op, e) -> string_of_uop op A string_of_expr e
082: | FuncCall(f, args) -> f A "(" A String.concat ", " (List.map

string_of_expr args) * ")
083: | Noexpr -> ""

084 :

085: let rec string_of_stmt = function
086: Block(stmts) ->

087: "{\n" A String.concat "" (List.map string_of_stmt stmts) * "}\n"
088: | Expr(expr) -> string_of_expr expr * ";\n";

089: | VarDecl(t, id) -> (string_of_typ t) A~ " " A id » ";\n"

090: | VarDeclAsn(t, id, e) -> (string_of_typ t) ~ " " A did » " = " A
(string_of_expr e) *» ";\n"

091: | Asn(id, e) -> id ~ " = " A (string_of_expr e) *» ";\n"

092: | Return(expr) -> "return " A string_of_expr expr * ";\n"

093: | For(s1, e, s2, s3) ->

094 : "for (" A string_of_stmt s1 A " ; " A string_of_expr e * "

" A

095: string_of_stmt s2 * ";) " A string_of_stmt s3

Fli/o Final Report 40

096: | If(e, s, Block([])) -> "if (" A string_of_expr e *» ")\n" A
string_of_stmt s
097: | If(e, s1, s2) -> "if (" A string_of_expr e *» ")\n" *

098: string_of_stmt s1 *» "else\n" * string_of_stmt s2

099: | Nostmt -> ""

100:

101: let string_of_vdecl (t, id) = string_of_typ t ~ " " A~ id *» ";\n"
102:

103: let string_of_fdecl fdecl =

104 : string_of_typ fdecl.typ ~ " " A

105: fdecl.fname » "(" * String.concat ", " (List.map snd
fdecl.params) *

106: “J\n{\n" A

107: String.concat "" (List.map string_of_stmt fdecl.body) #

108: "}\n"

109:

110:

111: let string_of_program program =

112: String.concat "\n" (List.map string_of_fdecl program.funcs) A
"\n" A

113: String.concat "\n" (List.map string_of_stmt program.stmts)

9.4 Static-semantic checker

src/semant.ml

001: (*

002: * semant.mil

003: * Author: Matthew Chan

004: *)

005: open Ast

006:

007: module StringMap = Map.Make (String)

008:

009: let check ast =

010:

011: (* Raise an exception if the given list has a duplicate *)
012: let report_duplicate exceptf list =

013: let rec helper = function

014: n1:n2: _whenn1=n2->raise (Failure (exceptf n1))

015: | _::t->helpert

Fli/o Final Report 41

016: [1->0)

017: in helper (List.sort compare list)

018: in

019:

020: (* Raise an exception if a given binding is to a void type *)

021: let check not_void exceptf = function

022: (Void, n) -> raise (Failure (exceptf n))

023: | _->()

024: in

025:

026: (* Raise an exception of the given rvalue type cannot be assigned to

027: the given Ivalue type *)

028: let check assign Ivaluet rvaluet err =

029: if lvaluet == rvaluet then Ivaluet else raise err

030: in

031:

032:

033: (* Print function cannot be redefined *)

034: if List.mem "print" (List. map (fun fd -> fd.fname) ast.funcs)

035: then raise (Failure ("function print may not be defined")) else ();

036:

037:

038: (* Duplicate function names not permitted *)

039: report_duplicate (fun n -> "duplicate function " * n)

040: (List.map (fun fd -> fd.fname) ast.funcs);

041:

042: let built_in_decls = StringMap.add "print"

043: { typ = Void; fname = "print"; params = [(Int, "x")];

044 body =[] } (StringMap.add "prints" { typ = Void; fname = "prints"; params =
[(String, "x")];

045: body =[]} (StringMap.add "fopen" { typ = File; fname = "fopen"; params =
[(String, "f")];

046: body =[]} (StringMap.add "delete" { typ = Int; fname = "delete"; params =
[(String, "X")];

047: body =[]} (StringMap.add "copy" { typ = Int; fname = "copy"; params = [(String,
"src") ; (String, "dest")];

048: body =[]} (StringMap.add "move" { typ = Int; fname = "move"; params = [(String,
"src") ; (String, "dest")];

049: body =[]} (StringMap.add "write" { typ = Int; fname = "write"; params = [(File, "") ;
(String, "buf")];

050: body =[]} (StringMap.add "read" { typ = String; fname = "read"; params = [(File,

") ; (Int, "length™)];

Fli/o Final Report 42

051: body =[]} (StringMap.add "readLine" { typ = String; fname = "readLine"; params
= [(File, "f")];

052: body =[]} (StringMap.add "appendString" { typ = Int; fname = "readLine"; params
= [(String, "f") ; (String, "buf")];

053: body =[]} (StringMap.add "dopen" { typ = Dir; fname = "dopen"; params =
[(String, "d")];

054: body =[]} (StringMap.add "rmdir" { typ = Int; fname = "rmdir"; params = [(String,
"d")];

055: body =[]} (StringMap.add "concat" { typ = String; fname = "rmdir"; params =
[(String, "s1") ; (String, "s2")];

056: body =[]} (StringMap.add "strcmp" { typ = Int; fname = "strcmp"; params =
[(String, "s1") ; (String, "s2")];

057: body =[]} (StringMap.add "intToStr" { typ = String; fname = "intToStr"; params =
[(Int, "i")];

058: body =[]} (StringMap.add "create" { typ = Int; fname = "create"; params =
[(String, "filename")];

059: body =[]} StringMap.empty)))))))))))))))

060: in

061:

062: (* Keep track of function declarations *)

063: let function_decls = List.fold_left (fun m fd -> StringMap.add fd.fname fd m)

064: built_in_decls ast.funcs

065: in

066:

067: let function_decl s = try StringMap.find s function_decls

068: with Not_found -> raise (Failure ("unrecognized function " * s))

069: in

070:

071:

072: let type_of _identifier s map =

073: try

074: StringMap.find s map

075: with Not_found -> raise (Failure ("undeclared identifier " * s))

076: in

077:

078: let rec expr map = function

079: IntLit _ -> Int

080: | StringLit _ -> String

081: | Id s ->lett = type_of identifier s mapint

082: | Noexpr -> Void

083: | Uop(op, €) as ex -> lett = expr map e in

084: (match op with

085: Neg when t = Int -> Int

Fli/o Final Report 43

086:
087:
088:
089:
090:
091:
092:
093:
094:
095:
096:
097:
e))
098:
099:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:

in

| Not when t = Int -> Int
| _ ->raise (Failure ("illegal unary operator " * string_of uop op *
string_of typ t*"in" # string_of_expr ex))
)
| FuncCall(f, args) as call -> let fd = function_decl f in

if List.length args != List.length fd.params then
raise (Failure ("expecting " * string_of _int
(List.length fd.params) * " arguments in " * string_of _expr call))

else
List.iter2 (fun (ft,) e -> letet =exprmap e in
ignore (check_assign ft et (Failure ("illegal actual argument found " #
string_of typ et * " expected " * string_of typ ft* " in " * string_of_expr

fd.params args ; fd.typ
| Binop(e1, op, €2) as e -> let t1 = expr map e1 and t2 = expr map e2 in
(match op with
Add | Sub | Mul | Div when t1 = Int && t2 = Int -> Int
| Eq | Neq when t1 =12 -> Int
| Lt | Gt when t1 = Int && 12 = Int -> Int
| And | Or when t1 = Int && t2 = Int -> Int
| _ ->raise (Failure ("illegal binary operator " *
string_of typt1 2" " A string_of opop #
" " Astring_of typt2A"in" A string_of expr e))

let check_bool_expr map e = if expr map e != Int

in

then raise (Failure ("expected Boolean expression in "
A string_of_expr €))
else ()

(**** Check Global Scope ****)
let check stmts =

(* Type of each variable (global, formal, or local *)
let symbols = StringMap.empty

in

let rec stmt map = function
Block sl -> let rec check _block m = function

Fli/o Final Report 44

128: [Return _as s]->stmtms

129: | Return _:: _ -> raise (Failure "nothing may follow a return")
130: | Block sl :: ss -> check _block m (sl @ ss)

131: | s :: ss -> check_block (stmt m s) ss

132: [[1->m

133: in check block map sl

134: | VarDecl(t, n) -> (StringMap.add n t map)

135: | VarDeclAsn(t, n ,e) -> ignore(expr map e); (StringMap.add n t map)
136: | Asn(n, e) as ex -> let It = type_of identifier n map and rt = expr map e in
137: ignore(check_assign It rt (Failure ("illegal assignment " * string_of _typ
It~

138: "="Astring_of typrtA"in" * string_of_stmt ex))) ; map

139: | Expr e -> ignore(expr map €) ; map

140: | Return e -> ignore(expr map €) ; raise (Failure ("returns not allowed
outside of function scope"))

141: | For(s1, e, s2, s3) -> let m = stmt map s1 in

142: ignore(expr m €); ignore(stmt (stmt m s2) s3) ; map

143: | If(e, s1, s2) -> check_bool_expr map e; ignore(stmt map s1); ignore(stmt
map s2); map

144 | Nostmt -> map

145: in stmt symbols (Block s)

146:

147: in

148:

149: (**** Check Functions ****)

150: let check_function global_map func =

151:

152: (* Params cannot have void type *)

153: List.iter (check _not_void (fun n -> "illegal void formal " A n A

154: "in " A func.fname)) func.params;

155:

156: (* Params cannot have duplicate names *)

157: report_duplicate (fun n -> "duplicate formal " A n " in " * func.fname)
158: (List.map snd func.params);

159:

160: (* Type of each variable (global, formal, or local *)

161: let symbols = List.fold_left (fun m (t, n) -> StringMap.add n t m)

162: global_map (func.params)

163: in

164:

165: (* Verify a statement or throw an exception *)

166: let rec stmt map = function

167: Block sl -> let rec check _block m = function

Fli/o Final Report 45

168: [Return _as s]->stmtms

169: | Return _:: _ -> raise (Failure "nothing may follow a return")

170: | Block sl :: ss -> check _block m (sl @ ss)

171: | s :: ss -> check_block (stmt m s) ss

172: [[1->m

173: in check block map sl

174: | VarDecl(t, n) -> (StringMap.add n t map)

175: | VarDeclAsn(t, n, _) -> (StringMap.add n t map)

176: | Asn(n, e) as ex -> let It = type_of identifier n map and rt = expr map e in
177: ignore(check_assign It rt (Failure ("illegal assignment " # string_of_typ
It~

178: "="AMstring_of typrt®"in" " string_of_stmt ex))) ; map

179: | Expr e -> ignore(expr map €) ; map

180: | Return e -> let t = expr map e in

181: if t = func.typ then map

182: else raise (Failure ("return gives " » string_of typ t* " expected " #
183: string_of typ func.typ A "in " 2 string_of _expr €))

184: | For(s1, e, s2, s3) -> ignore(expr map €); ignore(stmt (stmt (stmt map s1)
s2) s3) ; map

185: | If(e, s1, s2) -> check_bool_expr map e; ignore(stmt map s1); ignore(stmt
map s2); map

186: | Nostmt -> map

187:

188: in ignore(stmt symbols (Block func.body))

189:

190: in List.iter (check_function (check_stmt ast.stmts)) ast.funcs

9.5 Code Generation

src/codegen.ml

001: (*

002: * codegen.ml

003: * Author: Matthew Chan
004: *)

005: module L = Llvm

006: module A = Ast

007:

008: module StringMap = Map.Make(String)
009:

010: let translate program =
011:

Fli/o Final Report

46

012: (* Setup LLVM environment vars *)

013: let context = L.global_context () in

014: letthe_module = L.create_module context "flio"

015: andi32_t =L.i32_type context

016: andi8 t=L.i8 type context

017: and str_ptr_t = L.pointer_type (L.i8_type context)

018: and void_t = L.void_type context

019: in

020:

021: (* Pattern match AST types to LLVM types *)

022: let ltype _of typ = function

023: A.Int ->i32_t

024 | A.String -> str_ptr_t

025: | A.Void -> void_t

026: | A.File -> str_ptr t

027: | A.Dir -> str_ptr_t

028: in

029:

030: (* Utility function for getting a val from a map, given a key *)

031: letlookup n m = StringMap.find n m

032: in

033:

034:

035: (* Utility function to build a return block *)

036: let add_terminal builder f =

037: match L.block_terminator (L.insertion_block builder) with

038: Some _->()

039: | None -> ignore (f builder) in

040:

041: (* Declare built-in functions *)

042: let printf_t = L.var_arg_function_type i32_t [| L.pointer_type i8 t|]in
043: let printf_func = L.declare_function "printf" printf_t the _module in
044:

045: let concat_t = L.function_type (L.pointer_type i8_t) [| L.pointer_type i8_t ; L.pointer_type
i8_t[]in

046: let concat_func = L.declare_function "concat" concat_t the_module in
047:

048: letintToStr_t = L.function_type (L.pointer_type i8_t)[| i32_t[] in

049: letintToStr_func = L.declare_function "intToStr" intToStr_t the_module in
050:

051: let strcmp_t = L.function_type i32_t[| L.pointer_type i8 t; L.pointer_type i8 t|]in
052: let strcmp_func = L.declare_function "strcmp" strcmp_t the_module in

053:

Fli/o Final Report 47

054:
055:
056:
057:
058:
059:
060:
061:
062:
063:
064:
065:
066:
067:
068:
069:
070:
071:
072:
073:
074:
075:
076:
077:
078:
079:
080:
081:
082:
083:
084:
085:
086:
087:
088:
089:
090:
091:
092:
093:
094:
095:
096:

let create_t = L.function_type i32_t [| L.pointer_type i8 t|[] in
let create func = L.declare_function "create" create t the _module in

let fopen_t = L.var_arg_function_type (L.pointer_type i8 t) [| L.pointer_type i8 t|] in
let fopen_func = L.declare_function "fopen" fopen_t the_module in

let dopen_t = L.function_type (L.pointer_type i8_t) [| L.pointer_type i8 t|]in
let dopen_func = L.declare_function "opendir" dopen_t the _module in

let delete_t = L.var_arg_function_type i32_t [| L.pointer_type i8 t|]in
let delete_func = L.declare_function "remove" delete_t the_module in

let rmdir_t = L.function_type i32_t[| L.pointer_type i8 t|]in
let rmdir_func = L.declare_function "rmdir" rmdir_t the_module in

let copy_t = L.function_type i32_t [| L.pointer_type i8 t; L.pointer_type i8_t |]in
let copy_func = L.declare_function "copy" copy_t the_module in

let move_t = L.function_type i32_t[| L.pointer_type i8 _t; L.pointer_type i8 t|[]in
let move_func = L.declare_function "move" move_t the_module in

let write_t = L.function_type i32_t [| L.pointer_type i8 t; L.pointer_type i8_t |]in
let write_func = L.declare_function "bwrite" write_t the_module in

let appendstr_t = L.function_type i32_t [| L.pointer_type i8 t; L.pointer type i8 t|]in
let appendstr_func = L.declare_function "appendString" appendstr_t the_module in

let read_t = L.function_type (L.pointer_type i8 t) [| L.pointer_type i8 _t;i32_t|]in
let read_func = L.declare_function "bread" read_t the_module in

let readline_t = L.function_type (L.pointer_type i8 t) [| L.pointer_type i8 t|]in
let readline_func = L.declare_function "readLine" readline_t the_module in

(* Build a map of function declarations *)
let function_decls =
let function_decl m fdecl =
let name = fdecl.A.fname
and formal_types =
Array.of list (List.map (fun (t,) -> ltype_of typ t) fdecl.A.params)
in let ftype = L.function_type (Itype_of typ fdecl.A.typ) formal_types in
StringMap.add name (L.define_function name ftype the_module, fdecl) m in
List.fold_left function_decl StringMap.empty program.A.funcs in

Fli/o Final Report 48

097: (* Default format strings *)

098: letint_format_str builder = L.build_global_stringptr "%d\n" "fmt" builder in
099: let str_format_str builder = L.build_global_stringptr "%s\n" "fmt" builder in
100: let fopen_mode builder = L.build_global_stringptr "r+" "mode" builder in
101:

102: (* Construct code for an expression; return its value *)

103: let rec expr map builder = function

104: A.IntLiti-> L.const_inti32_ti

105: | A.Noexpr -> L.const_inti32 t0

106: | A.FuncCall ("print", [e]) ->

107: L.build_call printf_func [| (int_format_str builder) ;
108: (expr map builder e) |] "printf" builder

109: | A.FuncCall ("concat", [s1 ; s2]) ->

110: L.build_call concat_func [| (expr map builder s1) ;
111: (expr map builder s2) |] "concat" builder

112: | A.FuncCall ("create", [f]) ->

113: L.build_call create_func [| (expr map builder f) |]
114: "create" builder

115: | A.FuncCall ("intToStr", [e]) ->

116: L.build_call intToStr_func [| (expr map builder €) |]
117: "intToStr" builder

118: | A.FuncCall ("strcmp", [s1 ; s2]) ->

119: L.build_call strcmp_func [| (expr map builder s1) ;
120: (expr map builder s2) [] "strcmp" builder

121: | A.FuncCall ("fopen", [e]) ->

122: L.build_call fopen_func [| (expr map builder e) ; (fopen_mode builder)|]

"fopen" builder
123: | A.FuncCall ("dopen", [e]) ->

124: L.build_call dopen_func [| (expr map builder e) |] "dopen" builder

125: | A.FuncCall ("delete", [e]) ->

126: L.build_call delete_func [| (expr map builder e) |] "delete" builder

127: | A.FuncCall ("rmdir", [e]) ->

128: L.build_call rmdir_func [| (expr map builder €) |] "rmdir" builder

129: | A.FuncCall ("copy", [e1 ; e2]) ->

130: L.build_call copy_func [| (expr map builder e1) ; (expr map builder e2)|]
"copy" builder

131: | A.FuncCall ("write", [e1 ; €2]) ->

132: L.build_call write_func [| (expr map builder e1) ; (expr map builder e2)[]

"write" builder

133: | A.FuncCall ("appendString", [e1 ; e2]) ->

134: L.build_call appendstr_func [| (expr map builder e1) ; (expr map builder e2)|]
"appendString" builder

135: | A.FuncCall ("read", [e1 ; e2]) ->

Fli/o Final Report 49

136: L.build_call read_func [| (expr map builder e1) ; (expr map builder e2)|] "read"
builder

137: | A.FuncCall ("readLine", [e1]) ->

138: L.build_call readline_func [| (expr map builder e1) |] "readLine" builder

139: | A.FuncCall ("move", [e1 ; e2]) ->

140: L.build_call move_func [| (expr map builder e1) ; (expr map builder e2)|]
"move" builder

141: | A.FuncCall ("prints", [e]) ->

142: L.build_call printf_func [| (str_format_str builder);

143: (expr map builder e) |] "printf" builder

144: | A.Binop (e1, op, e2) ->

145: let e1' = expr map builder e1

146: and e2' = expr map builder e2 in
147: (match op with

148: A.Add ->L.build_add

149: | ASub ->L.build_sub

150: | AMul ->L.build_mul

151: | A.Div ->L.build_sdiv

152: | AAnd ->L.build_and

153: | A.Or ->L.build_or

154: | A.Eq ->L.build_icmp L.lcmp.Eq
155: | AANeq ->L.build_icmp L.Icmp.Ne
156: | ALt ->L.build_icmp L.lcmp.Slt
157: | A.Gt -> L.build_icmp L.lcmp.Sgt
158:) e1l' e2' "tmp" builder

159: | A.Uop (_,) -> raise (Failure ("not implemented yet"))
160: | A.StringLit s ->
161: L.build_global_stringptr s "strptr" builder

162: | A.ld s -> L.build_load (lookup s map) s builder
163: | A.FuncCall(f, args) ->

164: let (fdef, fdecl) = StringMap.find f function_decls in

165: let actuals = List.rev (List.map (expr map builder) (List.rev args)) in
166: let result = (match fdecl.A.typ with

167: A.Void ->""

168: | _->fA" result")in

169: L.build_call fdef (Array.of _list actuals) result builder

170: in

171:

172: (* Build function bodies *)

173: let build_function_body global_map fdecl =

174: (* Find the function in our map *)

175: let (fdef, _) = StringMap.find fdecl.A.fname function_decls in
176: (* Move the builder to the entry point of that function *)

Fli/o Final Report 50

177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:;
216:
217:
218:
219:

let builder = L.builder_at_end context (L.entry_block fdef) in

(* The function's local variables are initially the function args *)
let add_formal m (t, n) p = L.set_value_name n p;
let local = L.build_alloca (ltype_of typ t) n builder in
ignore (L.build_store p local builder);
StringMap.add n local m in
let local_vars = List.fold_left2 add_formal global _map
fdecl.A.params (Array.to_list (L.params fdef)) in

let rec fstmt mb = function
A.Block sl -> (List.fold_left fstmt mb sl)

| A.Expr e -> ignore (expr (fst mb) (snd mb) €); mb

| A.Nostmt -> mb

| A.For (s1, e, s2, body) ->
(* Construct for basic block *)
let init_bb = L.append_block context "init" fdef in
ignore (L.build_br init_bb (snd mb));

let pred_bb = L.append_block context "for" fdef in
ignore(pred_bb);

let init = fstmt (fst mb, L.builder_at_end context init_bb) s1 in
add_terminal (snd init) (L.build_br pred_bb);

(* Construct body basic block, and add s2 at the tail *)

let body_bb = L.append_block context "for_body" fdef in

let b = (fstmt (fst mb, L.builder_at_end context body_bb) body) in
add_terminal (snd (fstmt b s2)) (L.build_br pred_bb);

(* Do initialization before checking the predicate e *)
let pred_builder = L.builder_at_end context pred_bb in
let bool_val = expr (fst init) pred_builder e in

(* Construct merge basic block *)
let merge_bb = L.append_block context "merge" fdef in
ignore (L.build_cond_br bool_val body_bb merge_bb pred_builder);
(fst mb, L.builder_at_end context merge_bb)
| A.If (p, then_stmt, else_stmt) ->
let bool_val = expr (fst mb) (snd mb) p in
let merge_bb = L.append_block context "merge" fdef in

Fli/o Final Report

220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244;
245:
246:
247:
248:
249:
250:
251:
252:
253:
254;
255;
256:
257:
258:
259:
260:
261:
262:

let then_bb = L.append_block context "then" fdef in
add_terminal (snd (fstmt (fst mb, L.builder_at_end context then_bb) then_stmt))
(L.build_br merge_bb);

let else_bb = L.append_block context "else" fdef in
add_terminal (snd (fstmt (fst mb, L.builder_at_end context else_bb) else_stmt))
(L.build_br merge_bb);

ignore (L.build_cond_br bool_val then_bb else_bb (snd mb));
(fst mb, L.builder_at_end context merge_bb)
| A.Return e -> ignore(match fdecl.A.typ with
A.Void -> L.build_ret_void (snd mb)
| _-> L.build_ret (expr (fst mb) (snd mb) e) (snd mb)); mb
| A.VarDecl (t, n) -> let init =
(match t with
A.Int -> L.build_alloca i32_t n (snd mb)
| A.String -> L.build_alloca str_ptr_t n (snd mb)
| A.File -> L.build_alloca str_ptr_t n (snd mb)
| A.Dir -> L.build_alloca str_ptr_t n (snd mb)
| A.Void -> L.build_ret_void (snd mb)
)in
((StringMap.add n init (fst mb)), snd mb)
| A.VarDeclAsn (i, n,) -> let init =
(match t with
A.Int -> L.build_alloca i32_t n (snd mb)
| A.String -> L.build_alloca str_ptr_t n (snd mb)
| A.File -> L.build_alloca str_ptr_t n (snd mb)
| A.Dir -> raise (Failure ("not implemented yet"))
| A.Void -> L.build_ret_void (snd mb)
)in
let m = (StringMap.add n init (fst mb)) in
let €' = expr (m) (snd mb) e in
ignore(L.build_store €' (lookup n (m)) (snd mb)) ; (m, (snd mb))
| A.Asn (s, €) -> let ' = expr (fst mb) (snd mb) e in
ignore(L.build_store e' (lookup s (fst mb)) (snd mb)) ; mb
in

let builder = (snd (fstmt (local_vars, builder) (A.Block fdecl.A.body)))
in
(* Add a return if the last block falls off the end *)
add_terminal builder (match fdecl.A.typ with
A.Void -> L.build_ret void
| t-> L.build_ret (L.const_int (Itype_of typ t) 0))

Fli/o Final Report 52

263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:;
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:

in

(* Declare main function *)
let main_t = L.function_type i32_t[| |] in
let main_func = L.define_function "main" main_t the_module in

(* Variables in main are the empty set initially *)
let main_vars = StringMap.empty in

(* Init builder inside of main *)
let builder = L.builder_at_end context (L.entry_block main_func) in

(* Build statments inside of the main function *)
let build_stmts s =

(* Build the code for the given statement; return the StringMap and builder
for the statement's successor *)
let rec stmt mb = function
A.Block sl -> (List.fold_left stmt mb sl)
| A.Expr e -> ignore (expr (fst mb) (snd mb) €); mb
| A.Nostmt -> mb
| A.For (s1, e, s2, body) ->
(* Construct for basic block *)
let init_bb = L.append_block context "init" main_func in
ignore (L.build_br init_bb (snd mb));

let pred_bb = L.append_block context "for" main_func in
ignore(pred_bb);

let init = stmt (fst mb, L.builder_at_end context init_bb) s1 in
add_terminal (snd init) (L.build_br pred_bb);

(* Construct body basic block, and add s2 at the tail *)

let body_bb = L.append_block context "for_body" main_func in
let b = (stmt (fst init, L.builder_at_end context body bb) body) in
add_terminal (snd (stmt b s2)) (L.build_br pred_bb);

(* Do initialization before checking the predicate e *)
let pred_builder = L.builder_at_end context pred_bb in
let bool_val = (expr (fst init) pred_builder e) in

(* Construct merge basic block *)
let merge_bb = L.append_block context "merge" main_func in

Fli/o Final Report

306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344
345:
346:
347:
348:

ignore (L.build_cond_br bool val body _bb merge _bb pred_builder);
(fst mb, L.builder_at_end context merge_bb)
| A.If (p, then_stmt, else_stmt) ->
let bool_val = (expr (fst mb) (snd mb) p) in
let merge_bb = L.append_block context "merge" main_func in

let then_bb = L.append_block context "then" main_func in
add_terminal (snd (stmt (fst mb, L.builder_at_end context then_bb) then_stmt))
(L.build_br merge_bb);

let else_bb = L.append_block context "else" main_func in
add_terminal (snd (stmt (fst mb, L.builder_at_end context else_bb) else_stmt))
(L.build_br merge_bb);

ignore (L.build_cond_br bool_val then_bb else_bb (snd mb));
(fst mb, L.builder_at_end context merge_bb)
| A.Return _ -> raise (Failure ("returns are not allowed in main"))
| A.VarDecl (t, n) -> let init =
(match t with
A.Int -> L.build_alloca i32_t n (snd mb)
| A.String -> L.build_alloca str_ptr_t n (snd mb)
| A.File -> L.build_alloca str_ptr_t n (snd mb)
| A.Dir -> L.build_alloca str_ptr_t n (snd mb)
| A.Void -> L.build_ret_void (snd mb)
)in
((StringMap.add n init (fst mb)), snd mb)
| A.VarDeclAsn (i, n,) -> let init =
(match t with
A.Int -> L.build_alloca i32_t n (snd mb)
| A.String -> L.build_alloca str_ptr_t n (snd mb)
| A.File -> L.build_alloca str_ptr_t n (snd mb)
| A.Dir -> L.build_alloca str_ptr_t n (snd mb)
| A.Void -> L.build_ret_void (snd mb)
)in
let m = (StringMap.add n init (fst mb)) in
let €' = (expr (M) (snd mb) e) in
ignore(L.build_store €' (lookup n (m)) (snd mb)) ; (m, (snd mb))
| A.Asn (s, €) -> let ' = (expr (fst mb) (snd mb) e) in
ignore(L.build_store e' (lookup s (fst mb)) (snd mb)) ; mb
in

(* Build the code for each statement in the function *)
let retval = stmt (main_vars, builder) (A.Block s) in

Fli/o Final Report

349: ignore(add_terminal (snd retval) (L.build_ret (L.const_inti32_t 0))) ; fst retval

350: in
351:
352:

353: ignore(List.iter (build_function_body (build_stmts program.A.stmts)) program.A.funcs);

354:

355: (* Add terminal for main function *)

356: the _modu

9.6 Fli/o
src/flio.ml
01: (*

02: = flio.
03: * Autho
04: *)

05: type act
06 :

07: let () =
08:

09:

10:

11:

SAST") ;

12

generated LL
13:

print the ge
14

15:
[file.f]" in
16:

17

18:
usage_msg;
19:

20:

21:

22:

23:

24

le

ml
r: Matthew Chan

ion = Ast | LLVM_IR | Compile

let action = ref Compile in
let set_action a () = action := a in
let speclist = [
("-a", Arg.Unit (set_action Ast), "Print the

("-1", Arg.Unit (set_action LLVM_IR), "Print the
VM IR"):

("-c", Arg.Unit (set_action Compile), "Check and
nerated LLVM IR (default)");

] in
let usage_msg = "usage: ./filo.native [-a]|-s]|-1]|-c]

let channel = ref stdin in
Arg.parse speclist
(fun filename -> channel := open_in filename)

let lexbuf = Lexing.from_channel !channel in

let ast = Parser.program Scanner.token lexbuf in
ignore(Semant.check ast);

Fli/o Final Report 55

25: match 'action with

26: Ast -> print_string (Ast.string_of_program ast)
27: | LLVM_IR -> print_string (Llvm.string_of_llmodule
(Codegen.translate ast))

28: | Compile -> let m = Codegen.translate ast in

29: Llvm_analysis.assert_valid_module m;

30: print_string (Llvm.string_of_llmodule m)

9.7 Standard Library

src/stdlib.c

001: /*

002: * stdlib.c

003: * Author: Matthew Chan
004: */

005: #include <fcntl.h>
006: #include <stdio.h>
007: #include <sys/wait.h>
008: #include <unistd.h>
009: #include <sys/types.h>
010: #include <errno.h>
011: #include <string.h>
012: #include <stdlib.h>

013:
014: int copy(char *src, char xdest)
015: {

016: 1int status;

017: pid_t pid = fork();
018: /* Child proc */
019: if (pid == @) {

020: char *const args[] = {"/bin/cp", src, dest, NULL};
021: /* Syscall interrupt =*/

022: execv("/bin/cp", args);

023:

024 : /* Child should not reach this point */

025: fprintf(stderr, "error: %s\n", strerror(errno));
026: exit(1);

927: }

028: /* Parent proc */

029: else {

030: wait(&status);

Fli/o Final Report

031:
032:
033:
034 :
035:
036:
037:
038:
039:
040:
041 :
042
043 :
044
045:
046 :
047 :
048:
049 :
050:
051:
052 :
053 :
054 :
055:
056
057:
058:
059:
060 :
061 :
062 :
063 :
064 :
065:
066 :
067 :
068:
069 :
070:
071:
072
073:

return WEXITSTATUS(status);
}

return -1;

}

int create(char *filename)
{

int status;

pid_t pid = fork();

/* Child proc */

if (pid == @) {

char *const args[] = {"/bin/touch", filename, NULL};

/* Syscall interrupt =*/
execv("/bin/touch”, args);

/* Child should not reach this point */
fprintf(stderr, "error: %s\n", strerror(errno));
exit(1);

}

/* Parent proc */

else {
wait(&status);
return WEXITSTATUS(status);

}

return -1;

}

int move(char *src, char =*dest)

{

int status;

pid_t pid = fork();

/* Child proc */

if (pid == @) {
char *const args[] = {"/bin/cp", src, dest, NULL};
/* Syscall interrupt =*/
execv("/bin/mv", args);

/* Child should not reach this point */
fprintf(stderr, "error: %s\n", strerror(errno));
exit(1);

}

/* Parent proc */

else {

56

Fli/o Final Report 57

074 :
075:
076
077
078:
079:
080 :
081:
082 :
083 :
084 :
085:
086 :
087:
088:
089:
090 :
091 :
092 :
093:
094 :
095
096 :
097:
098:
099
100:
101:
102 :
103:
104 :
105:
106 :
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:

wait(&status);

return WEXITSTATUS(status);
}
return -1;
}

ssize_t bwrite(FILE *f, const char xbuf)

{

/* int fd = fileno(f); */

/* return write(fd, buf, strlen(buf)); */
return fputs(buf, f);

}

char xbread(FILE *f, size_t count)

{

char *buf = malloc(sizeof(char) * count);
fgets(buf, count + 1, f);
return buf;

}

char xreadLine(FILE xf)

{
return bread(f, 1000);

}

int appendString(const char *f, const char =*buf)

{

FILE xfile = fopen(f, "a");

int fd = fileno(file);

int ret = write(fd, buf, strlen(buf));
fclose(file);

return ret;

}

char *concat(const char #*s1, const char *s2)

{

char *c = malloc(strlen(s1) + strlen(s2) + 1);
strcepy(c, s1);

strcat(c, s2);

return c;

}

Fli/o Final Report

117
118:
119:
120:
121:
122:
123:
124 :
125:
126:
127
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:

58

char *intToStr(int value)

{

char *buf = malloc(sizeof(char) * 10);
sprintf(buf, "%d", value);
return buf;

}

#ifdef DEBUG
int main(int argc, char **argv)

{
/* copy("./test.txt", "./test2.txt"); x/
/* move("./test.txt", "./test3.txt"); */

/* FILE xf = fopen("test3.txt", "r+"); */
/* bwrite(fd, "hi there"); */

/* char *s = bread(fd, 2); */

/* char *s; */

/* size_t len; */

/* getline(&s, &len, fd); =*/

/* printf("%s", readlLine(f)); */
return 0;

}
#endif

src/testall.sh

001 :
002 :
003 :
004 :
005:
006 :
007 :
008 :
009 :
010:
011:
012:
013:
014:
015:
016:
017:

#!/bin/sh

testall.sh

Author: Matthew Chan
Inspiration: MicroC

Fli/o regression testing script
executes then checks the errors of all tests expected to fail

LLVM interpreter path
LLI="11i"
#LLI="/usr/local/opt/11lvm/bin/11i"

Path to the LLVM compiler
LLC="11c"

Path to the C compiler

Fli/o Final Report

018: CC="cc"

019:

020: FLIO="./flio.native"

021: #flio="_build/flio.native"
022 :

023: # time limit for operations
024: ulimit -t 30

025:

026: globallog=testall.log

027: rm -f Sgloballog

028: error=0

029: globalerror=0

030:

031: keep=0

032:

033: Usage() {

034: echo "Usage: testall.sh [options] [.f files]"
035: echo "-k Keep intermediate files"
036: echo "-h Print this help"

037: exit 1

038: }

039:

040: SignalError() {

041 : if [Serror -eq @] ; then

042: echo "FAILED"
043: error=1

044 . fi

045 echo " $1"
046: }

047 :

048: # Compare <outfile> <reffile> <difffile>

049: # Compares the outfile with reffile. Differences, if any,
written to difffile

050: Compare() {

051: generatedfiles="Sgeneratedfiles $3"
052 : echo diff -b $1 $2 ">" $3 1>&2
953 : diff -b "$1" "$2" > "$3" 2>&1 || {

054: SignalError "$1 differs from $2"

055: echo "FAILED $1 differs from $2" 1>&2
056 : }

957: }

058:

059: # Run <args>

Fli/o Final Report

060: # Report the command, run it, and report any errors

061: Run() {
062 : echo $* 1>8&2
063 : eval $x || {

064: SignalError "$1 failed on $*"

065: return 1

066 : }

067: }

068:

069: # RunFail <args>

070: # Report the command, run it, and expect an error
071: RunFail() {

072: echo $* 1>&2

073: eval $* && {

074: SignalError "failed: $* did not report an error"
075: return 1

076 : }

Q77: return @

978: }

079:

080: Check() {

081: error=0

082: basename="echo $1 | sed 's/.*\\///

083: s/\.f//""

084 : reffile="echo $1 | sed 's/\.f$//""

085: basedir=""echo $1 | sed 's/\/[A\/]1*$//' /."
086 :

087: echo -n "Sbasename..."

088:

089: echo 1>&2

090: echo "###### Testing Sbasename" 1>&2

091:

092: generatedfiles=""

093

094 : generatedfiles="Sgeneratedfiles S${basename}.1ll
S{basename}.out" &&

095: Run "SFLIO" "<" 81 ">" "S§{basename}.ll" &&

096 : Run "SLLC" "-relocation-model=pic" "${basename}.11" ">"
"S{basename}.s" &&

097: Run "S$CC" "-0" "${basename}.exe" "${basename}.s"
“../src/stdlib.o" &&

098: Run "./${basename}.exe" > "${basename}.out" &&

099: Compare S${basename}.out S${basename}.out S${basename}.diff

60

Fli/o Final Report 61

100:

101: # Report the status and clean up the generated files
102:

103: if [Serror -eq @] ; then

104: if [Skeep -eq 0] ; then

105: rm -f Sgeneratedfiles

106: fi

107: echo "OK"

108: echo "###### SUCCESS" 1>&2
109: else

110: echo "###### FAILED" 1>&2
111: globalerror=Serror

112: fi

113: }

114 :

115: CheckFail() {

116: error=0

117: basename="echo 81 | sed 's/.*\\///

118: s/\.f//""

119: reffile="echo $1 | sed 's/\.f$//"'"

120: basedir=""echo $1 | sed 's/\/[*\/]*S$//' /."

121:

122 echo -n "Sbasename..."

123:

124: echo 1>&2

125: echo "###### Testing Sbasename" 1>&2

126:

127 generatedfiles=""

128:

129: generatedfiles="Sgeneratedfiles ${basename}.err
S{basename}.diff" &&

130: RunFail "SFLIO" "<" $§1 "2>" "§{basename}.err" ">>" Sgloballog
&&

131: Compare S${basename}.err S{basename}.err ${basename}.diff
132:

133: # Report the status and clean up the generated files
134:

135: if [Serror -eq @] ; then

136: if [Skeep -eq @] ; then

137: rm -f Sgeneratedfiles

138: fi

139: echo "OK"
140: echo "###### SUCCESS" 1>&2

Fli/o Final Report

141 else

142 : echo "###### FAILED" 1>&2

143: globalerror=Serror

144 : fi

145: }

146 :

147 : while getopts kdpsh c; do

148: case S$Sc in

149: k) # Keep intermediate files

150: keep=1

151: 0

152: h) # Help

153: Usage

154: s

155: esac

156: done

157:

158: shift “expr SOPTIND - 1°

159:

160: LLIFail() {

161: echo "LLVM interpreter not found \"SLLI\"."
162: echo "Check LLVM installation/modify the LLI variable in
testall.sh"”

163: exit 1

164: }

165:

166: which "SLLI" >> Sgloballog || LLIFail
167:

168: # if [! -f stlib.o]

169: # then

170: # echo "Could not find stdlib.o"
171: # echo "Try \"make stdlib.o\""
172 # exit 1

173: # fi

174

175: if [S# -ge 1]

176: then

177: files=$@

178: else

179: files="../test/test-*x.f ../test/fail-*.f"
180: fi

181:

182: for file in Sfiles

Fli/o Final Report 63

183: do

184: case $file in

185: *test-*)

186: Check $file 2>> Sgloballog
187: 0

188: *fail-x*)

189: CheckFail S$file 2>> Sgloballog
190: s

191: # *)

192: # echo "unknown file type S$file"
193: # globalerror=1

194:. # i

195: esac

196: done

197:

198: exit Sglobalerror

9.8 Tests

9.8.1 Fail Tests

test/fail-assign.f

: // fail-assign.f

: // Author: Matthew Chan
:a =5,

: int a;

A WON =

test/fail-fdecl.f

1: // fail-fdecl.f

2: // Author: Matthew Chan

3: def voidfunc() void

4: {

5 prints('Functions should not declare void return type
explicity');

6: }

test/fail-fdecl2.f

1: // fail-fdecl2.f

2: // Author: Matthew Chan
3: def myfunc() {}

Fli/o Final Report

4: def myfunc() {}

test/fail-fdecl3.f

1:
2:

/
/

/ fail-fdecl3.f
/ Author: Matthew Chan

3: def dup_param(int a, int a) {}

test/fail-for.f

1
2
3:
4-
5

o/
/

/ fail-for.f
/ Author: Matthew Chan

for(int i =0; i <5; i=1+ 1) {

}

prints('hello world');

test/fail-hello.f

1:
2:

/
/

/ fail-hello.f
/ Author: Matthew Chan

3: prints("hello world!");

test/fail-if.f

01:
02
03:
04 :
05:
06 :
Q7 :
08:
09:
10:

// fail-if.f
// Author: Matthew Chan
int a = 5;
else {
prints('a is equal to 5');
}
if (a != 5) {
prints('a is not equal to 5');
}

test/fail-return.f

1:
2:
3:

/
/
r

/ fail-return.f
/ Author: Matthew Chan
eturn 1;

test/fail-scope.f

01:
02:
03:
04 :
05:
06 :

// fail-scope.f
// Author: Matthew Chan
int a = 5;

def printa()
{

Fli/o Final Report

07: print(a);
08: }

09:

10: printa();

test/fail-types.f

: // fail-types.f

: // Author: Matthew Chan
: int a;

: int b;

. string s;

:a=b+ s;

ook WON =

9.8.2 Success Tests

test/test-binop.f

01: // test-binop.f

02: // Author: Matthew Chan
03: int a = 19;

04: int b = 50;

05:
06 :
Q7.
08:
09
10:
11:
12
13:

O O T T T T T T

test/test-concat.f

1: // test-concat.f

2: // Author: Matthew Chan

3: prints(concat('hello', 'world'));

test/test-copyfile.f

01: // test-copyfile.f

02: // Author: Matthew Chan

03: string filename = 'myfile.txt';
04: create(filename);

05: string copyname = 'copyfile.txt';
06: file f = fopen(filename);

Fli/o Final Report

Q7 :
08 :
09:
10:
11:

copy(filename, copyname);

delete(filename);
delete(copyname) ;

test/test-createfile.f

OOl A WN =

: // test-createfile.f

: // Author: Matthew Chan

: string filename = 'myfile.txt';
: file f = filename;

: appendString(filename, 'hola mundo!');

: delete(filename);

test/test-decl2.f

01:
02:
03:
04 :
05:
06 :
a7
08:
09 :
10:
11:
12:
13:
14
15:
16:
17
18:
19:
20:
21:
22:
23:
24 :
25:
26:

// test-decl2.f

// Author: Matthew Chan
string s = 'hello’;
prints(s);

int a;

a=25;

print(5 * a + 10);
for (int b =0; b<4; b=>b+1;) {
}
def hi() {
prints('hi");
}
hi();
def get5() int {
return 5;
}
print(get5());
//file f = './test.txt';

Fli/o Final Report

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

//copy(f, './test2.txt');
//move(f, './test3.txt');
//file f2 = './test3.txt');
//int fd = fopen(f2);
//write(fd, 'hithere');

file f = fopen('test3.txt');

// write(f, 'hellofriend\n');

// prints(readLine(f));

// appendString('test3.txt', 'appendingSTRING!');

// rmdir('deleteme’);
// string[5] a;

test/test-fcall.f

01:
02
03:
04 :
05:
06 :
Q7 :
08:
09:
10:

// test-fcall.f
// Author: Matthew Chan
def sum(int a, int b) int

{
return a + b;
}
int a = 10;
int b = 5;

print(sum(a, b));

test/test-fcall2.f

01:
02
03:
04 :
05:
06 :
Q7 :
08:
09:
10:

// test-fcall2.f

// Author: Matthew Chan
int a = 19;

int b = 5;

print(sum(a, b));

def sum(int a, int b) int

{

return a + b;

}

test/test-fdecl.f

1:
2:

// test-fdecl.f
// Author: Matthew Chan

3: def sum(int a, int b) int

67

Fli/o Final Report

(o) ¢, IEE-N

o A

return a + b;

}

test/test-fdecl2.f

1
2
3
4.
5
6
7

: // test-fdecl2.f
: // Author: Matthew Chan
: def filefun() file

{
file f = fopen('myfile.txt');
return f;

test/test for.f

O\U'Ihwl\)—\

: // test-for.f

: // Author: Matthew Chan

:int j = 10;

: for(int i =0; i <10; i=1+1;) {

j=3+1i

}

test/test-hello.f

1:
2:
3:

// test-hello.f
// Author: Matthew Chan
prints('hello world!");

test/test -hello2.f

O’l-hool\)—‘

: // test-hello2.f

: // Author: Matthew Chan
: oprint(1);

: print(10);

: print(55);

test/test-if.f

01:
02:
03:
04 :
05:
06 :
a7
08:

// test-if.f
// Author: Matthew Chan
for (int 1 =0; 1 <10; i =1+ 1;) {
if (i > 5 or i == 5) {
prints('i is less or equal to 5');
}
else {
prints('i is more than 5");

Fli/o Final Report

09:
10:

}

test/test-logic.f

01:
02
03:
04 :
05:

0)

06 :
a7
08:
09 :
10:

// test-logic.f
// Author: Matthew Chan
def go_outside(int dow, string weather) int

{

if (dow == 5 or dow == 6 and strcmp(weather,

return 1;
return 0;

}

print(go_outside(5, 'great'));

test/test-movefile.f

01:
02:
03:
04 :
05:
06 :
a7
08:
09 :

// test-movefile.f
// Author: Matthew Chan

string filename = 'myfile.txt';
create(filename);
string newname = 'renamedfile.txt’;

move(filename, newname) ;

delete(newname) ;

test/test-number.f

a b wN =

: // test-number.f
: // Author: Matthew Chan

:int a = 5;
:a=a* 19;
:int b =a / 5;

test/test-readfile.f

01:
02:
03:
04 :
05:
06 :
a7
08:

// test-readfile.f

// Author: Matthew Chan

string filename = 'myfile.txt';
create(filename);

file f = fopen(filename);

appendString(filename, 'hola mundo!');
prints(readLine(f));

69

"horrible') !=

Fli/o Final Report

09: delete(filename);

test/test-rmdir.f

1: // test-rmdir.f

2: // Author: Matthew Chan
3: rmdir (' removeme');

test/test-string.f
1: // test-string.f

2: // Author: Matthew Chan
3: 'hi';
4: string s = 'there';

test/test-void.f
: // test-void.f
: // Author: Matthew Chan
: def voidfunc()

{

a b WON =

prints('Functions should not declare void return type
explicity');
6: }

9.9 Demo

demo/demo.f

01: // demo.f

02: // Author: Matthew Chan

03: // Demo program that shows off Fli/o

04:

05:

06: def addLineNumbers(string filename)

07: {

08: file f = fopen(filename);

09:

10: // Create a copy of the current file
11: string copyName = concat('lined_', filename);
12: copy(filename, copyName);

13:

14: file newFile = fopen(copyName);

15:

Fli/o Final Report

16: string line = readlLine(f);

17:

18: // Keep track of which line we are on

19: int lineNo = 0;

20: string prefix;

21:

22: // Loop through all of the lines in file f

23: for(; stremp(line, '') '=0;;) {

24 : prefix = concat('[', intToStr(1lineNo));
25: prefix = concat(prefix, '] ');

26:

27: // Write the lined version to the new file
28: write(newFile, concat(prefix, line));
29: line = readLine(f);

30: lineNo = lineNo + 1;

31: }

32:

33: }

34:

35: addLineNumbers('sample.txt');

demo/rundemo.sh

01: # demo.f

02: # Author: Matthew Chan
03: # Build the project
04: cd ../src

05: make

06 :

07: cd -

08:

09: # Compile and run the demo script

19: ../src/flio.native < demo.f > demo.1ll

11: 1llc demo.1ll

12: clang demo.s ../src/stdlib.c -o demo
13: ./demo

14:

15: rm demo.1l1l demo.s demo

9.10 Miscellaneous

README . md

Fli/o Final Report 72

01: # Fli/o
02: A programming language developed to create a seamless way for
users to interact with files.

03:

04: # Installation
05:

06: ## Prerequisites
a7

08: LLVM, 0OCaml and cc are required to build the compiler for Fli/o.
09:

10: ## Steps

11:

12: Run "make” in the /src directory. Then, to compile a program named
‘myprogram.f’, run “flio.native < myprogram.f > myprogram.s’ to build
the LLVM IR.

13:

14: Then run “1llc myprogram.ll” to build the Assembly code. Finally,
run “clang myprogram.s stdlib.c -o myprogram®™ to link the Assembly
code with Fli/o standard library and create an executable named

‘myprogram’ .

15:

16: Note, you can use other C compilers instead of clang here. (Ex:
gcc, cc)

17:

18: # Testing

19:

20: To run all tests, run "bash testall.sh'.

src/Makefile

01: # Makefile

02: # Author: Matthew Chan
93: SCC = gcc

04 :

05: .PHONY : all

06: all : clean flio.native
Q7 :

08: .PHONY : flio.native
09: flio.native

10: ocamlbuild -use-ocamlfind -pkgs llvm,llvm.analysis -cflags
-w, +a-4 \

11: flio.native

12: $(CC) -c stdlib.c

Fli/o Final Report 73

13:

14: .PHONY: clean

15: clean:

16: ocamlbuild -clean

17: rm -rf scanner.ml parser.ml parser.mlii flio
18: rm -rf *.cmx *.cmi *.cmo *.cmx *.0

19: rm -rf testall.log *.diff *.err *.11

20: rm -rf *.exe *s *.out flio.tar.gz

21:

22: TESTS = binop concat copyfile createfile decl2 fcall fcall2 fdecl
fdecl2 \

23: for hello hello2 if logic movefile number readfile rmdir string
void

24:

25: FAILS = assign fdecl fdecl2 fdecl3 for hello if return scope types
26:

27: TESTFILES = S(TESTS:%=test-%.f) S(FAILS:%=fail-%.f)

28:

29: SOURCEFILES = Makefile scanner.mll parser.mly ast.ml sast.ml
semant.ml \

30: testall.sh codegen.ml flio.ml

31:

32: DEMOFILES = rundemo.sh sample.txt demo.f

33:

34: TARFILES = ../README.md S$(SOURCEFILES) S(TESTFILES:%=../test/%)
$(DEMOFILES:%=../demo/%)

35:

36: OBJS = ast.cmx codegen.cmx parser.cmx scanner.cmx semant.cmx
flio.cmx

37:

38: flio : $(0BJS)

39: ocamlfind ocamlopt -linkpkg -package llvm -package
40: 1lvm.analysis $(OBJS) -o flio

41 :

42: scanner.ml : scanner.mll

43: ocamllex scanner.mll

44 :

45: parser.ml parser.mli : parser.mly

46: ocamlyacc parser.mly

47 :

48: %.cmo : %.ml

49: ocamlc -c S$<

50:

Fli/o Final Report

51: %.cmi : %.mli

52: ocamlc -c $<

53: %.cmx: %.ml

54: ocamlfind ocamlopt -c -package 1llvm $<

55:

56: flio.tar.gz : S(TARFILES)

57: cd .. && tar zcf src/flio.tar.gz S(TARFILES:%=src/%)
58:

59: #.PHONY : clean

60: #clean

61: #rm -f flio parser.ml parser.mli scanner.ml *.cmo *.cmi
62:

63: # Generated by ocamldep *.ml *.mli

64: ast.cmo:

65: ast.cmx:

66: codegen.cmo: ast.cmo

67: codegen.cmx: ast.cmx

68: flio.cmo : semant.cmo scanner.cmo parser.cmi codegen.cmo ast.cmo
69: flio.cmx : semant.cmx scanner.cmx parser.cmx codegen.cmx ast.cmx
70: parser.cmo: ast.cmo parser.cmi

71:. parser.cmx: ast.cmx parser.cmi

72 . scanner.cmo: parser.cmi

73: scanner.cmx: parser.cmx

74: semant.cmo : ast.cmo

75: semant.cmx : ast.cmx

76:. parser.cmi: ast.cmo

9.11 Git Log

commit ed6786a22061339f9cb2068e67faf6f464ad28e8
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 19 17:36:39 2018 -0500

Add stdlib to Makefile

commit cf81da910cedd60fe6a940eabel1f22517f6e49f3
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 19 15:46:45 2018 -0500

Update testall.sh

Fli/o Final Report

commit 522ed6244b666b00b4119a805dbf67292365bafa
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 19 15:37:49 2018 -0500

Update Makefile

commit 8ea729dea57b20b6ebf5df6ed4d4deb4cbdac7167
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 19 15:13:48 2018 -0500

Fix demo script

commit ©503bc23876768332d7313¢c02841d67332d827dd
Merge: fb892685 2b89995

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 19 15:11:23 2018 -0500

Resolve merge conflict

commit 2b89995247b6662d0d266c07af240d6ae7218801
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 19 15:10:27 2018 -0500

Update README.md

commit fb892054806adab20a9b7d1fd5d43a0558dde8260
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Mon Dec 17 00:12:22 2018 -0500

Add cleanup commands

commit 8461e267166a378525eb6cafcaf3adf4043304fdd
Merge: 8921276 caf87ef

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Dec 16 23:14:51 2018 -0500

Merge pull request #8 from matthewachan/development

Prepare for demo

commit caf87ef5ad51564c4e639¢c11495be82b39b2dc47
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sun Dec 16 23:14:14 2018 -0500

75

Fli/o Final Report

Remove extraneous files

commit 00d4fed4aaad98b5e1082ad1fed993bbc3c7chb3df1
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sun Dec 16 23:11:23 2018 -0500

Add strcmp

commit f73bcf1673a34e42351a49338eb0948c6316aaec
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sun Dec 16 23:06:43 2018 -0500

Add demo program

commit 7d348791f054cd544acd86113943b29eBad52427
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sun Dec 16 23:06:36 2018 -0500

Add additional builtin functions and fix tests

commit 8921276ac3a6d49284cchb853chb6d93c2a15b50a4
Merge: e6d7c28 faa91cd

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sat Dec 15 19:28:30 2018 -0500

Merge pull request #7 from matthewachan/development
Merge stable version of development branch into master
commit faa91cd20db64a53deB9bd06d37339e61d44c74b
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sat Dec 15 19:25:56 2018 -0500
Clean up codebase
commit 11f49f09bc3994b649420262a9b26cc9d0449876
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sat Dec 15 18:20:34 2018 -0500

Update test suite

commit d151dc647f9390004405c0a765c64c3dcf73faaf

76

Fli/o Final Report

Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sat Dec 15 17:41:02 2018 -0500

Add tests

commit 755e249755bdb249e3962ad1fa94a59c646c5e48
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sat Dec 15 17:40:55 2018 -0500

Add concat builtin function

commit 3fde8b23cfd78ebabeeB1ca944a16632e16f4419
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sat Dec 15 17:17:38 2018 -0500

Remove arrays and proc type

commit 7c@5c5bedeafd54156295e9f9¢cc59¢2411f9db69f
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sat Dec 15 16:40:15 2018 -0500

Remove pipe operator

commit e22fd25eaf8bb107019639ae613a97f027b1aae4d
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sat Dec 15 16:36:02 2018 -0500

Remove foreach

commit 73aeab60767bf5ae4c428f0de91eb8e98d12569ab
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sat Dec 15 16:35:08 2018 -0500

Remove dot operator
commit e240250bb3f319f77e4bd0B6ee7380bcd675beda
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sat Dec 15 16:34:20 2018 -0500

Remove elif

commit 7b7d16af828bac5e7fc710c533cbecabe565b9a6
Author: Matt Chan <matthew.a.chan@gmail.com>

77

Fli/o Final Report

Date: Sat Dec 15 16:29:32 2018 -0500
Remove imports

commit 2f53328312529a3169f8aa596e9cb91794fe19b2
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Sat Dec 15 16:26:54 2018 -0500

Saving changes before cleanup

commit a75123b41ead36bec7e0556f73be9f99c471048f
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Thu Dec 13 16:46:41 2018 -0500

Revert "Testing..."
This reverts commit c32b178de000a849daeb16f6720533aca8481b0e.

commit c32b178de000a849daeb16f6720533aea8481b0be
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Thu Dec 13 16:27:44 2018 -0500

Testing...

commit 38c4ed7df870f35030cee3a5fd8278ebb669d019
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Thu Dec 13 15:57:43 2018 -0500

Implement proc type
commit fef60237ealc15eTaabb7al5eca2a7185467b286
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Thu Dec 13 15:32:55 2018 -0500

Add array literals
commit b28e821bc9308e65b649dbcd5d252686f2350dcd
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Thu Dec 13 13:41:28 2018 -0500

Finish with builtin functions

commit 6cefdefdice88e24049c9ad4bcc20bf6076566¢C7

78

Fli/o Final Report

Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 21:20:52 2018 -0500

Fix file builtins and Makefile

commit 247bdb7f0@b3eea279bb1e8a5667f43b28b2f602f
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 20:45:42 2018 -0500

Implement copy function

commit 562da89fefe45f752c9e70aeeacb749abebc98d1
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 20:12:51 2018 -0500

Start building the standard library

commit 6369b6ea968d1ae499a61904813d5ffaf177e841
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 19:45:07 2018 -0500

Add open builtin function for files

commit 676574232ebe79dca37f37a32646116063d963c
Merge: 75ccc63 bb85ca4

Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 19:19:25 2018 -0500

Resolve merge conflicts

commit 75ccc63d704b26c3effd99a8abB051735adebf4a
Merge: 00dab6f 50247b5

Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 19:16:44 2018 -0500

Merge from mchan
commit 50247b58749b7641e250e9e2befObf47db96d556
Author: Matt Chan <matthew.a.chan@gmail.com>

Date: Wed Dec 12 19:06:54 2018 -0500

Fix for loop initialization

79

Fli/o Final Report

commit 59b38bd5f94c7009ecbeddbf683d19851a39f0ea
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 18:02:05 2018 -0500

Added return statements

commit Bcc59dd4349e1ceab642d6d3c5dfc29¢cc6976093d
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 17:55:36 2018 -0500

Implemented functions

commit 7e46d8f214f2bf34a7ed783ecb1c8e1c69f355ab
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 15:12:17 2018 -0500

Implement for loop

commit f3064b7652dad6ede9d855d0048bdof53224729c
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 14:12:45 2018 -0500

Fix add terminal logic for main
commit b5090535dedf287eaacde3395d75566ff269b9d1
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 13:42:10 20618 -0500

Implement binary operators
commit 56a8023b78c92f370379ce3d75eea53e7d26ba32
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 13:27:55 2018 -0500

Fixed main variable declarations
commit 9da82ac53298cd09f2f7bd4af0e222b83122355f
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 12:26:39 2018 -0500

Added StringMap for Ids

commit bb85ca47c689d47bc69cfeb3e5f3080c2caadb74e

80

Fli/o Final Report

Author: Eyob <eyobtefera26@Yahoo.com>
Date: Wed Dec 12 11:52:50 2018 -0500

Codegen forelif

commit ed306d9e4d3d14087dd2fbdbf3adof4c6480fb2a
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 10:39:47 2018 -0500

Implement string literals

commit fa67886215d7a9c735df806736a7bf46099e8a434
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Dec 12 10:39:14 2018 -0500

Enable semantic checking (again)

commit 00dab6f7f29199e3e9fd9eab705catbd1deal868d
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Dec 11 19:14:24 2018 -0500

Builds all functions and everything in each function

commit 522d1a03ad630241ccb376883a45263b61999732
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Fri Dec 7 20:00:59 2018 -0500

Working copy, codegen still needs changes to fully build

commit a2e809713f1b247f82c1657702c71f2d97c15da7
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Sat Nov 24 02:04:35 2018 -0500

Defined variable types, globals, and functions, filled out some
cases for statements and expressions. See commented out code around
66-76 for some problems with filling out functions, and the for case
in the pattern matching

commit e6d7c28fc23d97c71eec1252098cb98cb6c36365
Merge: d88c122 5951499

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Mon Nov 19 22:38:35 2018 -0500

Fli/o Final Report 82

Update Makefile
Merging from development branch

commit 5951499b62711ebd9fe9f6c5ee881d4789f80919
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 16:03:29 2018 -0500

Update Makefile to add required files to tarball

commit d88c122ac23c1a9d7ca89f7¢c47945d6e960ecch3
Merge: 247c58a 601db48

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 15:44:51 2018 -0500

Merge pull request #5 from matthewachan/development
Fix testall.sh and regression tests

commit 601db48113f8be63dd9932ba7f701bc966a8cO0f
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 15:43:45 2018 -0500

Remove printbig from Makefile

commit fbcBe18d997b67381fe8b7cecfd89f313b7938cd
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 15:40:37 2018 -0500

Update README test information
commit 77edd244d5fd21133f205055e01dd5b6acb1da56
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 15:38:18 2018 -0500

Fixed testall script and test suite
commit 247c58adef9d69a99eac2e579ff6b392¢c852159a
Merge: 39ecfc9 a29d211
Author: Matthew Chan <matthew.a.chan@gmail.com>

Date: Wed Nov 14 13:43:48 2018 -0500

Merge pull request #4 from matthewachan/development

Fli/o Final Report

Adding in hello world test program

commit a29d2119c7446abfc2c760e856920c2f8abaelca
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 13:42:57 2018 -0500

Adding in hello world test program

commit 39ecfc94f4931da11c0409fd59f3026cdb577794
Merge: b5163d6 b8aaf5d

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 13:41:31 2018 -0500

Restructure directory for hello world submission

commit b8aaf5df5ca803e47087b4504e16f8c213fab3f8
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 13:38:18 2018 -0500

Restructure directory for hello world submission

commit b5163d696ab94f8de50212743273337a74850118
Merge: 4c548a5 c5clcab

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 13:32:13 2018 -0500

Merging working codegen build

codegen.ml has been fixed and successfully compiles a test
hello_world program.

commit c5c1cab342425c2a51ebfaf11b3012f8d5708ead
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 13:25:09 2018 -0500

Fixed codegen and Makefile (working build)
commit a2f54e6b71a9371b427772da62a5637358b5e306
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Wed Nov 14 09:20:56 2018 -0500

Renamed ast.ml to ast.mli fixed codegen errors

83

Fli/o Final Report

commit 4c548a5b4a468e5197caefea84eecOc2d7ea9102
Merge: 7cc45df 79fb551

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 02:18:47 20618 -0500

Merge pull request #1 from matthewachan/development
Enable pretty printing

commit 79fb55170a263cc4e092e3a37b7e10200b532399
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 02:17:32 2018 -0500

Enable pretty printing

commit 7cc45df582c44e3b35bf8c25bd6d8b603146bb95
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 02:03:14 2018 -0500

Add pretty printing to semant exception messages

commit 2dff75f262c671925a9ddd1832769022b5b5d20d
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 01:49:13 2018 -0500

Pretty printing tested and working

commit dd86fb23adee60473cb32cabace3151256d006e7
Merge: @6cfcdd f85b343

Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 01:20:21 2018 -0500

Working semant build
commit @6cfcdo6fa83570T96651862fea520dc1911193d
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Wed Nov 14 01:06:16 2018 -0500

Revert "parser fix; Pretty Printer almost complete"

This reverts commit 4b37d148fb4bc98fbeba6975cd3614fbc553d4ee.

84

Fli/o Final Report

commit f85b343605f9a98c0078e6279a6b345¢c72b788a3
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Nov 13 23:52:45 2018 -0500

Made changes to codegen/top level would work

commit 2074ffb0d810f1679c4b67826abbBb9dd1f72c1f
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Nov 13 20:43:00 2018 -0500

Getting codegen to compile

commit ec8bacbB7f3caa574dd274626f3b07094e645520
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Nov 13 19:28:10 2018 -0500

Removing local variables

commit 826e503761e5eeb1348ad22e5ef6be3e78¢c30491
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Nov 13 19:24:35 2018 -0500

Revert "Pretty Printer Functions/AST mostly done"
This reverts commit 08f8000fc84274b61cccd3f929ddb9a9b62fc566.
commit 66b96c5de8c165e3dbdebac87b51e52cfab6fB2c
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Nov 13 19:23:23 2018 -0500
reverted changes
commit c1dd@74abB5b31162f6150338972e09d0750cbeb
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Nov 13 19:22:06 2018 -0500
Revert "parser fix; Pretty Printer almost complete”
This reverts commit 4b37d148fb4bc98fbeba6975cd3614fbc553d4ee.
commit ©844295d8057bfaa7700c2f81bcebf7cd9cea3d79

Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Nov 13 19:21:53 2018 -0500

85

Fli/o Final Report

Revert "adding back locals”

This reverts commit 3babcbda85143641e080ba28f03ect84deB6an8o.

commit 7f766afc2ba2754825b7bf2fae2825565e9c3e8e
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Nov 13 19:20:48 2018 -0500

reverting pretty printer changes

commit 3babcbda85143641e080ba28f03ect84deB6an8o
Author: Talenel <jg3544@columbia.edu>
Date: Tue Nov 13 07:53:50 2018 -06500

adding back locals

commit 4b37d148fb4bc98fbeba6975cd3614fbc553d4ee
Author: Talenel <jg3544@columbia.edu>
Date: Tue Nov 13 07:49:24 2018 -0500

parser fix; Pretty Printer almost complete

commit b85688f40dBed1al2c11742dc2076aeab2cb85fc
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Nov 13 03:36:53 2018 -0500

Updated files to allow for codegen

commit 9b55073e29e80ad7ff885243f3a965a4ada2be38
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Nov 13 00:28:29 2018 -0500

Fixing codegen syntax errors
commit 284b17b470188a02c1f3eb5d3c76790282d10711
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Mon Nov 12 23:56:04 2018 -05600

renamed codegen.ml

commit ©0f8fe899d4eaB42bc6f1f2b108c2c9745298b94
Author: Eyob <eyobtefera26@Yahoo.com>

86

Fli/o Final Report

Date: Mon Nov 12 23:50:15 20618 -0560
fixed Makefile error

commit 08f8000fc84274b61cccd3f929ddb9a9b62fc566
Author: Talenel <jg3544@columbia.edu>
Date: Mon Nov 12 21:51:58 2018 -0500

Pretty Printer Functions/AST mostly done

commit 6ffc78898deB318d95b51d5606f3852dac3cf967
Author: Gideon Rono <gideonrono@dyn-160-39-160-232.dyn.columbia.edu>
Date: Mon Nov 12 15:09:49 2018 -0500

test file changes

commit cb4649c68621c0849e383b806c36d9a8f4b31aa9
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Mon Nov 12 14:01:18 2018 -0500

Add checking for global statement list

commit 54417a9cea2febe992e7cbB7ec55ad99610175b4
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Mon Nov 12 14:01:01 2018 -0500

Reverse global statement list order (was reversed)

commit 745a5ad2c728c451d2dd28df36aed9a349092e37
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Mon Nov 12 13:23:14 2018 -0500

Check functions mostly completed

commit fd64d4448ec16835d9ad87970ee1e4b68c5d85e8
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Mon Nov 12 13:18:29 2018 -0500

Minor changes to AST and parser structure
commit fc6db9061f5aed109fB6a10a20c2e96da274db56

Merge: 444d650 a@945db
Author: Matt Chan <matthew.a.chan@gmail.com>

87

Fli/o Final Report

Date: Mon Nov 12 13:17:30 2018 -0500
Merge branch 'master' of github.com:matthewachan/flio

commit 444d650c37b2f7138d5f7c2ea59ad81f66bf1d8c
Author: Matt Chan <matthew.a.chan@gmail.com>
Date: Mon Nov 12 13:16:17 2018 -0500

Semantic checker almost done for functions

commit a@945db4aedb1690bb427e1ba7c8cd92c69b56df
Author: Gideon Rono <gideonrono@Gideons-MacBook-Pro.local>
Date: Mon Nov 12 ©01:43:22 2018 -0500

testall update

commit d1dbf5474b8a44f1e5fa3dc76f10a33f272cc438
Author: Gideon Rono <gideonrono@Gideons-MacBook-Pro.local>
Date: Mon Nov 12 ©1:40:35 2018 -0500

testall

commit 730e764c9b022c824bbe2f96816113a9f2e0B4cc

Merge: 32b4368 9f217fe

Author: Gideon Rono <gideonrono@dyn-160-39-160-232.dyn.columbia.edu>
Date: Mon Nov 12 00:08:10 2018 -05600

updates
Merge branch 'master' of https://github.com/matthewachan/flio

commit 32b4368ba6f2ad1e9ab6d72fbBac49e5b532da89
Author: Gideon Rono <gideonrono@dyn-160-39-160-232.dyn.columbia.edu>
Date: Mon Nov 12 00:07:40 2018 -0500

new test files
commit f9794f5d72b1a181d2182c41dc7805e3639a6e9b
Author: Gideon Rono <gideonrono@dyn-160-39-160-232.dyn.columbia.edu>
Date: Sun Nov 11 23:59:04 2018 -0500

test_suite changes

commit 9f217fe616493ad86e9921d4c3eb68ac4e95bc218

Fli/o Final Report

Author: Eyob <eyobtefera26@Yahoo.com>
Date: Sun Nov 11 22:56:04 2018 -0500

updated makefile to integrate codegen

commit 723a673023cb167c6306505d47ecba95555e5e9e
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Sun Nov 11 21:09:28 2018 -06500

created toplevel for compilation

commit 9521948b49e33671eebf581ab08552ea132967db3
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Sun Nov 11 20:49:40 2018 -0500

Rough outline of codegen, some statements and expression types
still need handling

commit 85838e9dfaee6fb7f8fcc11c76738d95b6cd901e
Merge: 0e6fdo2 ffc4061

Author: Eyob <eyobtefera26@Yahoo.com>

Date: Sun Nov 11 19:23:32 2018 -0500

Filled our statements and expression builder
Merge branch 'master' of https://github.com/matthewachan/flio

commit Be6fd02e1d7b2583d0c8c44950b6370da3974950
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Sun Nov 11 19:23:26 2018 -0500

cleaned up statement
commit ffc40615b5066f5b3b473dcf895¢c8424898e9ccd
Author: Gideon Rono <gideonrono@dyn-160-39-160-232.dyn.columbia.edu>
Date: Sun Nov 11 16:30:15 2018 -0500
Fli-o
commit 604faaebB1216b371a0f8311f148369b481d452bf
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Fri Nov 9 22:08:59 2018 -05600

added basic expression to the builder

Fli/o Final Report

commit b4a2b7a7d3692aaelcbb3257cae920bcab365ef8
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Fri Nov 9 20:28:43 2018 -0500

Local/global variable declarations

commit 2686781611d8e00e5d7262ef16f3e4alc6621a94
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Fri Nov 9 18:59:39 2018 -05600

Refined the types by introducing the use of structs instead of
pointers

commit 1a87dbdd31410fcc1b84758a3efccd3al1501ech?
Merge: 60ef2d1 101c075

Author: Eyob <eyobtefera26@Yahoo.com>

Date: Sun Nov 4 19:25:48 2018 -0500

Merge branch 'master' of https://github.com/matthewachan/flio

commit 101c075e502511fce9e55bf6e2585a71317f517a
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sat Nov 3 14:31:59 2018 -04600

Add some pretty printing functions

commit 4e7bd719ecd7960d933171573945797cd26b4abb
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Fri Nov 2 10:18:40 2018 -0400

Add SAST
commit 60ef2d1f106b0e4375¢c1106498d2f039762bb41a
Author: Eyob <eyobtefera26@Yahoo.com>
Date: Tue Oct 30 23:50:11 2018 -0400
beginning of codegen, just included types
commit 3e1d39319eb436518cdda8deebcbaaa773cdbob8

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Mon Oct 15 22:37:07 2018 -0400

Fli/o Final Report

Update tests

commit 5e31f66adB17a14f33a2a0d2b6fed4al336ccfcfci
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Mon Oct 15 22:36:23 2018 -0400

Add parenthesis expr

commit 40722ac8adff37152d5d7f6392293e6bd97c32df
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Mon Oct 15 21:48:09 2018 -0400

Make piping a statement rather than an expression

commit 73b97eb4799673997ee02f3f1dc172b865640342
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Mon Oct 15 21:05:05 2018 -0400

Add imports

commit 520d7776ecbdb5d4e565¢c4235ae77539607d33d1
Merge: 287b@c4 1b3dba2

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Mon Oct 15 20:15:07 2018 -0400

Merge branch 'master' of github.com:matthewachan/flio

commit 287b0c47def8eaa8d8828e531dcedfbb5d2a6c7b
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Mon Oct 15 20:14:18 2018 -0400

Make assignment a statement rather than an expression

commit 1b3dba21c0f8b50e799b6c2fbe89abee3094b391
Author: Gideon Rono <gideonrono@dyn-160-39-160-98.dyn.columbia.edu>
Date: Mon Oct 15 19:27:16 2018 -0400

second test file, makefile update
commit ccP8f8f2586afe351d598c7db3055a81bel12bec4

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 02:38:06 2018 -0400

91

Fli/o Final Report

Add test files

commit 9201fe4311b19edcec3dcal13424b5663e8e8e2ad
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 02:34:11 2018 -0400

Comment out negative unary operator

commit 9b2e0f6193de479ea%9al3e68f6a100f5bb734560f
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 02:28:59 2018 -0400

Update failure and success messages

commit e89b2aeb8c29e4490913f8d0a636b164edae90e4
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 02:17:59 2018 -0400

Add comments

commit 2019dccd4825e261532c6c26ccafc1d1e5b2b5b9
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 02:15:11 2018 -0400

Add elif
commit 838900ed4e07143039f3cOb4b53b21332b331596
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 01:51:02 2018 -0400

Add pipe operator
commit dddb74f621d082a7f5b465e9b1c72371260e35be
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 01:43:35 2018 -0400

Add dot operator
commit 13cefc5a32eebb904540a6ef7088144f8b306696
Author: Matthew Chan <matthew.a.chan@gmail.com>

Date: Sun Oct 14 01:25:57 2018 -0400

Remove old files

92

Fli/o Final Report

commit 11850aalee965b44f6a6b98c386f61fb72b482a16
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 061:23:08 2018 -0400

Allow void function definitions and add comments

commit 9d693c6d9278aab18191eel1b1630d1234adB5ef5
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 01:22:23 2018 -0400

Restructure directory

commit d3b05a630df8721f21e83b545¢c5ccd7¢c0320673dc
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 00:57:49 2018 -0400

Add array accessing and initialization

commit Tad@5fe9b8dec51956ffdd3658638b46ccbecdba
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 00:42:16 2018 -0400

Add function calls
commit 45dfc5aa7f9adf950d9a88febB16ae49830def1d
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sun Oct 14 00:33:09 2018 -0400

Add function definitions
commit 0e628d2546ec6ed78bf62ee7760a4ddf8432166¢
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sat Oct 13 23:16:31 2018 -0400

Add foreach loop
commit d748faBcd8c891ecB5cad442dcab652a9cab215e30
Author: Matthew Chan <matthew.a.chan@gmail.com>

Date: Sat Oct 13 23:11:05 2018 -0400

Add additional operators

93

Fli/o Final Report

commit de6c0975b530be541695328a3028e4bdd733d973
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sat Oct 13 22:49:58 2018 -0400

Add array declaration

commit c6fd042e696575da2409c69a4dfe6f6341d1536f
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sat Oct 13 22:43:44 2018 -0400

Add file and dir types
commit 957c4df62d0964072e1c2a3cch168alc13ecadb4
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sat Oct 13 22:25:34 2018 -0400

Add if/else statements
commit 610b86afBabd2e494bbhe2a17087ede2870b5f6d8

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sat Oct 13 22:07:15 2018 -0400

Add logical operators, for loops (semi-colon sequencing)

commit 56d337f63354f7d5debd944072f97b2855fabdo7
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Sat Oct 13 14:21:09 2018 -0400

Establish working base
commit 9317ac2c72821b80446aca5b31e0b09348914d83
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Fri Oct 12 15:11:11 2018 -0400

Update scanner with int, string and var
commit 9b83b6cbb912185717576e€9c5403da5f30720b32
Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Fri Oct 12 14:58:57 2018 -0400

Add primitive tokens to scanner

commit b9914d3c3f8cP1ed92a7dec5fea312d69f7fcdo6

94

Fli/o Final Report

Author: Matthew Chan <matthew.a.chan@gmail.com>
Date: Fri Oct 12 14:35:49 2018 -0400

Init base files
commit b4e4d4630b284b085885bc964ae555ba598b9ba3
Author: Matthew Chan <matthew.a.chan@gmail.com>

Date: Fri Oct 12 13:55:27 20618 -0400

Initial commit

95

