
VSCOde

Jessica Cheng (jc4687)
Anna Lu (ajl2256)

Hana Mizuta (hm2694)
Kenneth Yuan (kky2114)
Spencer Yen (ssy2121)

September 19, 2018

1 Introduction and Motivation

VSCOde is a language that is designed to analyze and manipulate images. The inspiration behind
our language is the high definition mapping technology used by autonomous vehicles, only our
scope is on a much more rudimentary level.

Users will be able to upload JPG image files and modify the image in a number of ways, such
as by rotating the image, adjusting colors (saturation, brightness, contrast, etc.), basic edge detec-
tion, and creating custom filters. The images will be represented as matrices in our language to
grant users greater control over the individual pixels in an image and allow for easy application of
filters through matrix transformations.

The syntax of our language draws from C and Python because of its matrix-focused nature (and
MatLab and R are too difficult). We want to take the simplicity of Python standard library
functions, but keep C’s use of semicolons and brackets to detect statement endings and clauses.

2 Language Details

2.1 Primitives

Type Description
int 32-bit signed integer
double 64-bit float point number
bool 8-bit boolean variable
string Array of ASCII characters

2.2 Structures

Type Description Syntax
tuple Immutable sequence of any mix-

ture of object types
(object1, object2, ...)

matrix Mutable data structure storing
multi-dimensions of objects

[
-1, -1, -1;
-1, 8, -1;
-1, -1, -1;

];

1



2.3 Keywords

Keyword Description
this Object self-reference
func Indicates function declaration
return Return statement
void Indicates that function has no return value
true Boolean keyword for true
false Boolean keyword for false
-> Denotes return type of function

2.4 Operators

Operator Description
+ Addition (scalar and matrix)
- Subtraction (scalar and matrix)
* Multiplication (scalar and matrix)
/ Division (scalar and matrix)
% Modulo (scalar)
++, – Increment (scalar), Decrement (scalar)
+=, -=, *-, /= Add, subtract, multiply, divide left by/to right
<, >, <=, >= Greater than, less than, greater than or equal to,

less than or equal to

2.5 Functions

Name Description Return Type
print(string s) Prints argument to standard output void
dim(matrix m) Gets the dimensions of an object (int, int)
load(string
name)

Loads an image into a 3-tuple of red, green,
blue matrices

(matrix, matrix, matrix)

save(matrix r,
matrix g, ma-
trix b, string s)

Saves 3 matrices corresponding to RGB values
as a jpg image with name s

bool

2.6 Built-in Matrix Transformations

Method Description
transpose(matrix m) Transposes matrix m
replace(matrix m, int a, int b) Replaces every instance of a in matrix m with b
multiply(matrix a, matrix b) Multiplies matrix a by matrix b
rotate(matrix a, double deg) Rotates matrix a by deg degrees by multiplying the matrix by

[[cos(deg), sin(deg)], [-sin(deg), cos(deg)]]
convolute(matrix a, matrix b) Convolutes matrix a with matrix b

2



2.7 Flow Control

Statement Description Syntax

if / elif / else Conditional statements

if (condition) {
...

} elif (condition) {
...

} else {
...

}

while / for Iterative statements while (condition) {...}
for element in matrix {...}

continue / break Branching statements continue;
break;

3 Language Features

Indentation: Our language will not be whitespace-sensitive

Index: Using zero index

Semicolons: Semicolons can indicate the end of a matrix row or the end of a statement

Single-line Comment: Denoted by //

Multi-line Comment: Denoted by /* */. Can nest comments as follows: /* /* */ */

Accessing Elements in a Matrix: If we define a matrix with name M, we can access its
elements with the following syntax:

matrix M =
[

-1, -1, -1;
-1, 8, -1;
-1, -1, -1;

];

print(M[1, 2]) // should print element in 2nd row, 3rd column: -1

4 Code Samples

4.1 GCD Algorithm

// greatest common denominator function in VSCOde
func gcd (int m, int n) -> int {

while (m > 0) {
int c = n % m;
n = m;
m = c;

}
return n;

}

3



4.2 Grayscale

/* multi-line comment
function to grayscale images */

func applyGrayscale (String imageName) -> void {
// read image into a matrix
matrix r, g, b;
r, g, b = load(imageName); // load returns a tuple

// weighted method of grayscale
multiply(r, 0.3);
multiply(g, 0.59);
multiply(b, 0.11);

save(r, g, b, "new.jpg");
}

4.3 Edge Detection

func applyAllDirectionEdgeDetection (string imageName) -> void {
// read image into a matrix
matrix r, g, b;
r, g, b = load(imageName); // load returns a tuple

// all direction edge direction matrix
matrix edgeDetection =
[

-1, -1, -1;
-1, 8, -1;
-1, -1, -1;

];

convolute(r, edgeDetection);
convolute(g, edgeDetection);
convolute(b, edgeDetection);

save(r, g, b, "new.jpg");
}

5 References

FaceLab Report.
Lane Detection for Self-Driving Cars with OpenCV.
Lode’s Computer Graphics Tutorial.

4

http://www.cs.columbia.edu/~%20sedwards/classes/2017/4115-fall/reports/Facelab.pdf 
https://lodev.org/cgtutor/filtering.html 
https://lodev.org/cgtutor/filtering.html 

	Introduction and Motivation
	Language Details
	Primitives
	Structures
	Keywords
	Operators
	Functions
	Built-in Matrix Transformations
	Flow Control

	Language Features
	Code Samples
	GCD Algorithm
	Grayscale
	Edge Detection

	References

