
UNI-corn: The language for abstract circuit logic

Gael Zendejas (gz2255) - Manager,
Dan Sendik (drs2176) - Language Guru,
David Lalo (djl2178) - System Architect,

Adiza Awwal (asa2201) - System Architect,
Maryam Aly (mya2114) - Tester

September 19, 2018

Abstract

Construct a language that allows users to abstractly create circuit logic
without visualization.

1 Introduction

You are probably sitting in your Fundamentals class right now thinking to your-
self, ”What did I get myself into?”. While you sit impatiently, your professor
pulls up the the circuit representation of a bit adder and you immediately find
yourself cluelessly staring at it. You try to understand what all these wires are
doing and what these weird gates represent. Eventually you get the hang of it,
but you still get frustrated when you hear the word “Logisim”.

UNI-corn is circuit logic from a programmer’s perspective. Inspired by great
hardware descriptive languages like Lava and Virgil, but with syntax more fa-
miliar to software developers. Boolean logic and binary manipulation are at the
core of UNI-corn. UNI-corn’s relatively simple syntax and ease of translation
from circuit diagrams into executable virtual circuits make it an excellent tool
for hardware engineers and students.

2 Use Cases and Purpose

UNI-corn is ideal for creating programs that simulate circuit logic. Program-
mers or students will be able to create algorithms for hardware-level arithmetic
operations such as adders (full, carry-lookahead, ripple), multiplexers, and reg-
isters. These algorithms could then be used to build larger components like a
multiplier using arithmetic or a ROM using registers. Additionally, programs in
the language would lend themselves well to bit-level manipulation of numbers
using unary operations.

1

3 Data Types and Primitives

bool:

• Boolean value, zero or one

int:

• Numerical value between 0 and 64

wire:

• Contains an array of only zeros and ones

• Number of bits in a wire is determined at the time of creation.

• Number of bits is denoted between a set of square brackets immediately
following the variable name(e.g. wire foo[8] = 00000101)

4 Operators

4.1 Built-In Functions and Gates

AND:

• Output is 1 only if all inputs are 1; accepts two arguments
e.g. AND(0,1) = 0

OR:

• Output is 1 if either input is 1; output is 0 only if both inputs are 0;
accepts two arguments
e.g. OR(0,1) = 1

NOT:

• Output is 1 if input is 0; output is 0 if input is 1; accepts one argument
e.g. NOT(1) = 0

NOR (negates OR):

• Output is 1 only if both inputs are 0; accepts two arguments

NAND (negates AND):

• Output is 1 only if all inputs are NOT 1; output is only 0 when all inputs
are 1; output is opposite of AND gate; accepts two arguments

XOR:

• Output is 1 if only of the inputs is 1; output is 0 when both inputs are 1
or when both inputs are 0; accepts two arguments

2

XNOR:

• Output is only 1 if both inputs are 0 or both inputs are 1; output is 0
when either of the inputs is 1; accepts two arguments

〈〈 (Left bitshift operator):

• Takes a binary array that will be shifted as argument 1 and an integer
to denote the number of bits to shift as argument 2; returns a binary
array of the same length as the original; leftmost bit value is shifted out
and discarded. The new bit that is shifted into the rightmost position is
always a zero. e.g. 〈〈 (00000101, 1) this is shifting the leftmost bit of the
binary array by 1 bit and placing it in the rightmost position; the result
is 00001010

〉〉 (Right bitshift operator):

• Takes a binary array that will be shifted as argument 1 and an integer to
denote the number of bits to shift as argument 2; returns a binary array of
the same length as the original; the array on the right side of the operator
is the number of bitshifts to perform; rightmost bit value is removed and
placed as the leftmost bit e.g. 〉〉 (00001110,1) this is shifting the rightmost
bit of the binary array by 1 bit and placing it in the leftmost position; the
result is the result is 00000111

5 Nice To Have: Additional features and func-
tionalities

This Nice to Have section highlights the features that the team would like to
implement after approval from Professor Edwards and with the permission of
time. However, they are not essential.

Syntactic Sugar (aka UNIcorn dust): Transform:

• A ∗B into AND(A,B)

• A + B into OR(A,B)

• ˜A into NOT (A)

Probes:

• In gate: Returns value of some wire—a way of specifying which to print
when.

• Register: Returns value stored in register.

Generalizing:

• Generic sized arguments (i.e. gates with n-bit inputs), depending on gen-
eralized loops.

• Gate overloading.

• Implementing built-in gates for generic input size.

Consolidation:

• Concatenating wires into larger wires.

3

6 Syntax Table

7 Code Sample

This program creates an algorithm within the hardware. While the adders are
hardcoded, the multiplication happens iteratively. In this case, we multiply 2
times 6, by sequentially repeating addition of 2, 6 times. But notice that there
are not physically 6 adders (only 1). Instead, this program uses 2 and 6 as
variable inputs. It is essentially a really long-winded, hardware way of writing:
for (i=0; i<6; i++) sum+= 2; print(sum);

4

Multiplier ( 
wire a = 0010
wire b = 0110

)

//n-bit multiplier. Actually running this would require a generic Adder as well,
//which is not defined in this program. So in reality 4-bit Multiplier is called by overloading.
gate Multiplier (wire a[n], wire b[n])

wire time = Counter()[out];

wire sum[n] = Adder(a, sum)[out];
BeqC = EQ(b, time)[out];  
out = Register(sum, BeqC);

end (out[n])  

//4-bit multiplier. Takes in a and b and returns their product.
gate Multiplier (a[4], b[4])

wire time = Counter()[out];

wire sum[4] = Adder(a, sum)[out];
BeqC = EQ(b, time)[out];  
out = Register(sum, BeqC);

end (out[4])  

//8-bit multiplier. Takes in a and b and returns their product.
gate Multiplier (wire a[8], wire b[8])

wire time = Counter()[out];

wire sum[8] = Adder(a, sum)[out];
BeqC = EQ(b, time)[out];  
out = Register(sum, BeqC)[out];

end (out[8])

//8-bit Adder. Takes in a and b and returns their product. (To use 4-bit or n-bit adder, we’d
have to generalize, which are called by their respective multipliers, we’d have to write those
too).  
gate Adder (a[8], b[8])

out[0] = HalfAdder(a[0], b[0])[out];
c1 = HalfAdder(a[0], b[0])[carry];

s1 = HalfAdder(a[1], b[1])[out];
out[1] = XOR(c1, s1);

or1 = OR(a[1], b[1]);  
and1 = AND(c1, or1);  
pc1 = HalfAdder(a[1], b[1])[carry];
c2 = OR(pc1, and1);

s2 = HalfAdder(a[2], b[2])[out];
out[2] = XOR(c2, s2);

or2 = OR(a[2], b[2]);  
and2 = AND(c2, or2);  
pc2 = HalfAdder(a[2], b[2])[carry];
c3 = OR(pc2, and2);

5

//etc, etc

s6 = HalfAdder(a[6], b[6])[out];
out[6] = XOR(c6, s6);

or6 = OR(a[6], b[6]);  
and6 = AND(c6, or6);  
pc6 = HalfAdder(a[6], b[6])[carry];
c7 = OR(pc6, and6);

s7 = XOR(a[7], b[7])[out];
out[7] = XOR(c7, s7);

end (out[8])

//Half-adder.
gate HalfAdder (a, b)

out = XOR(a, b);
carry = AND(a, b);

end (out, carry)

//Counts the current cycle.
gate Counter ()

const wire one[8] = 00000001;
wire reg[8] = Register(regUp, CLOCK);
wire regUp[8] = Adder(one, reg);
carry = reg;

end (out)

//Returns 1 if a == b. 0 otherwise. 8-bit
gate EQ (a[8], b[8])

e0 = XNOR(a[0], b[0]);
e1 = XNOR(a[1], b[1]);
e2 = XNOR(a[2], b[2]);
e3 = XNOR(a[3], b[3]);
e4 = XNOR(a[4], b[4]);
e5 = XNOR(a[5], b[5]);
e6 = XNOR(a[6], b[6]);
e7 = XNOR(a[7], b[7]);

out = AND(e0, e1, e2, e3, e4, e5, e6, e7);

end (out)

6

