Typescript-on-LLVM

Ratheet Pandya
UNI: rp2707
COMS 4115 HO1 (CVN)
Project Proposal

Describe the language that you plan to implement.

| would like to implement a very simplified subset of Typescript (which is statically-typed and
compiles down to Javascript) that would work server-side (as opposed to in the browser).

Explain what sorts of programs are meant to be written in your language.

Any basic program that can be run server-side (not in the browser). e.g., computing the
Fibonacci sequence, GCD, etc.

Explain the parts of your language and what they do.

The language will support:

A subset of the Basic Types. Namely: Boolean, Number, String, Array, Tuple, and
Void.

null values

let and const for declaring scoped names

String concatenation

Block scoping via 1et

Functions

while loops

if-else conditionals

(nice-to-have) Basic Classes without inheritance - may introduce a new “struct” type
that is not in the Typescript spec for this. Mainly | would like to support grouping data and
functions together. All the bells and whistles of classes are not necessary for this.

The language will not support anything else in the Typescript specification.

Some things worth calling out - it will NOT support:

Browser builtins: as far as | know, compiling Typescript down to LLVM out-of-the-box
would not give access to browser-specific libraries, so it would not be feasible to support
JS browser facilities (like document or window).
o There is a library that lets you compile LLVM into JS (Emscripten), but it seems
like overkill to try to support this for the project.
The rest of the Basic Types (Tuple, Enum, Any, Never, undefined):


http://typescriptlang.org/
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/variable-declarations.html
https://www.typescriptlang.org/docs/handbook/variable-declarations.html
https://www.typescriptlang.org/docs/handbook/functions.html
http://kripken.github.io/emscripten-site/docs/introducing_emscripten/about_emscripten.html

e The Advanced Types

e Optional parameters, default-initialized parameters
e Interfaces, Class inheritance

Include the source code for an interesting program in your language.

Here’s how one could compute GCD (imperative-style) in Typescript-on-LLVM:

function gcd(a: number, b: number): number {
while (a !'= b) {
if (a > b) {
a -= Db;
} else {
b -= a;

return a;

Here’s a GCD example using recursion:

function gcd(a: number, b: number): number {
if (a == b) {
return a;
1
if (a > b) {
return gcd(a - b, b);
} else {
return gcd(a, b - a);

Finally, a more ambitious example using simple struct-like classes to build a binary-search
tree:

class Node {
value: string;
left: Node;
right: Node;
constructor (v: string, 1l: Node; r: Node) {
this.value = v;



https://www.typescriptlang.org/docs/handbook/advanced-types.html

let bst =

Node ('C’,
Node (‘B’,
Node (‘A’,
null),
Node ('D’,
null,
Node (‘E’,

null,

null,

null),

null)));




