
(SSOL) Simple Shape Oriented Language

Madeleine Tipp Jeevan Farias Daniel Mesko
 mrt2148 jtf2126 dpm2153

Description:
 SSOL is a programming language that simplifies the process of drawing shapes
to SVG files. It will feature built-in types to represent geometric shapes and standard
library operations to render them in SVG files. To output to an SVG file, the programmer
must instantiate a Canvas object, and add at least one element object to it. The Canvas
object can then be passed to the ​draw()​ library function with a String filename to create
an SVG file.

Elements are added to a Canvas object programmatically-- the Canvas is
essentially a queue. When a Canvas is drawn, the last element to be added to the
canvas gets the highest z-index. There are four types that represent elements: Ellipses,
Polygons, Lines, and Bezier curves. Ellipses and Polygons are defined by center point
(a 2D pixel location) and a radius and/or sidelength. Lines are defined by two points. A
Bezier curve is a parametrically defined curve with a beginning and ending anchor point
and a control point for each. Our language encodes the data for each shape that the
user creates. Upon running of the executable created by compilation, this data is
rendered in SVG format.

Types of programs to be written in the language:

The intended use of SSOL is creating images. The user defines the size of their
canvas along with the size, location, and orientation of the various shapes that they
would like to put on it using the “draw()” function. Without calling draw(), SSOL functions
as a minimal, general purpose programming language similar to C.

Types:

Primitives:

Type Definition Example

int Signed integers 5, -5

float Floating point decimals 3.2, -4.7

bool Boolean values True, False

char ASCII characters ‘Z’, ‘7’

String Array of chars “abcd”, “hello”

Array Sequential block of a
variables of a particular type

int nums[5];
nums[3] = 100;

Complex Types:
The following built-in types are represented as objects. Each has its own constructor,
that modify certain public fields of the object. For the types Line, Bezier, Ellipse, and
Poly, there are private fields for fill and stroke colors (in RGB and Alpha values), that
can only be modified by the fill() and stroke() functions. The Canvas object contains a
private pointer to the first element (either a Line, Bezier, Ellipse, or Poly), and each
element contains a private pointer to the next element in the Canvas. The last element
has 0 for this value.

Object Description Constructor Parameters Functions

Canvas Represents the
window in which
the elements are
drawn.

length ​(float) - pixel length
width ​(float) - pixel width

Line Straight line
between 2
points.

x1 ​(float) - x coordinate of
first point
y1 ​(float) - y coordinate of
first point
x2 ​(float) - x coordinate of
second point
y2 ​(float) - y coordinate of
second point

stroke(float, float,
float, float) ​- takes
R,G,B, and Alpha
values, respectively,
for border colors.

Bezier A bezier curve
with 2 anchor
points and 2
control points.

x1 ​(float) - x coordinate of
first anchor point (origin)
y1 ​(float) - y coordinate of
first anchor point (origin)
x2 ​(float) - x coordinate of
first control point

stroke(float, float,
float, float) ​- takes
R,G,B, and Alpha
values, respectively,
for border colors.

y2 ​(float) - y coordinate of
first control point
x3 ​(float) - x coordinate of
second control point
y3 ​(float) - y coordinate of
second control point
x4 ​(float) - x coordinate of
second anchor point
y4 ​(float) - y coordinate of
second anchor point

Ellipse Elliptical shape
with a center
point, x axis, and
y axis. Center
point is origin.

x ​(float) - x coordinate of
center
y ​(float) - y coordinate of
center
xAxis ​(float) - length along
x axis
yAxis ​(float) - length along
y axis

stroke(float, float,
float, float) ​- takes
R,G,B, and Alpha
values, respectively,
for border colors.

fill(float, float, float,
float) ​- takes R,G,B,
and Alpha values,
respectively, for fill
colors.

Poly Regular polygon
shapes defined
by number of
sides and side
length. Center
point is origin.

x ​(float) - x coordinate of
center
y ​(float) - y coordinate of
center
sideLen ​(float) - length of
each side
numSides​ (float) - number
of sides

stroke(float, float,
float, float) ​- takes
R,G,B, and Alpha
values, respectively,
for border colors.

fill(float, float, float,
float) ​- takes R,G,B,
and Alpha values,
respectively, for fill
colors.

Keywords:

//​ ​this is a comment (multi-line comments not supported)

Keyword Usage

if Control flow

while Looping structure

for Looping structure

return Designates end of function, followed by
value to be returned (if non-void function)

Operators:

Operator Usage Example

+, -, *, /, % Addition, subtraction,
multiplication, division, mod

5 + 4
7 - 2
6 * 3

= Assignment x = 5

==, != Equality 5 != 10

<, >, <=, >= Comparison 6 > 3

&&, ||, ! Logical AND, OR, NOT
operators

5

| Sequentially group elements to
add to Canvas object

Canvas x = e1 | e2;

|= Add elements to existing
Canvas object

x |= e3 | e4;

Library Functions:

Function Description

draw(Canvas, String) Void​. This function outputs an SVG image with all
the information stored in the Canvas object. The
second parameter is the filename. When the
executable is run, it will make as many output files
as there are draw() calls.

rotate([Line, Bezier, Ellipse,
Poly], float)

[Line, Bezier, Ellipse, Poly]​. Can rotate any
element around its origin point by a value specified
in ​degrees.​ Returns a copy of element.

translate([Line, Bezier, Ellipse,
Poly], float, float)

[Line, Bezier, Ellipse, Poly]​. Reposition element
with respect to its origin. Returns a copy of
element.

random(int, int) Int. ​Takes a range of integers between the values
of 0 and 255 and picks a random integer value
within that range as the RGB value. This will be
linked to the C random function.

Sample Program:
Triangles and Squares
This program makes a simple design. A square canvas of 100x100px default size. 4
squares make up a frame, each with a random stroke color. In the center is a star made
up of 10 triangles each with a random stroke and fill color that are rotated 36 degrees
more than the previous and are layered on top of each other. Triangles have 50%
opacity.

int main(){

 //create a canvas with default size of 100x100px

 Canvas myCanvas = Canvas(100,100);

 for(int i = 0; i < 10; i++){

 //create triangle and rotate

 Poly tri = Poly(50,50,20,3);

 tri = rotate(tri, i/10 * 360);

 tri.stroke(random(0,255),random(0,255),radom(0,255));

 tri.fill(random(0,255),random(0,255),random(0,255),0.5);

 myCanvas |= tri;

 }

 for (int i=0; i<4; i++){

Poly square = Poly(50,50,100-i*3,4);

square.fill(random(0,255),random(0,255),

random(0,255),0.5);

 }

 draw(myCanvas, “myFile”);

 return 0;

}

