

COMS 4115 Programming Languages and Translators

Project Proposal
Ryan Chun (ec3255)

Garrison Grogan (gg2652)
Ryan Jay Koning (rjk2153)
Trisha Maniar (trm2144)

SOSL – Set Operations Simplification Language

SOSL is a language that focuses on simplifying formal set theory operations in order to make it
easy to manipulate sets and create functions that act on them, their elements, and/or subsets.
Rather than rely on the user to create functions for basic set operations, SOSL will provide
special operators for these functions (intersection, union, Cartesian product, etc.).
SOSL is meant to allow the programmer to write programs that evaluate set theoretic equations
and functions without having to go through the cumbersome process of defining the functions
long hand in a given language. The power of our language is in the operator set, because the
programmer can forego calling a cumbersome standard library function and simply use SOSL’s
special operators. This makes things concise and simplifies, relative to other languages like Java,
the notion of working with sets in a programming environment.

Language Features:

● Sets and their operations: Easily define sets, and perform set theoretic operations like
union, intersection, and complement. Cartesian products are represented as a set of
arrays.

● Element types such as integers, floating point numbers, characters, booleans, arrays, and
sets themselves. Elements can be placed in sets or manipulated themselves.

● Loops and iterators over sets. Semantically these are different since sets are not ordered
while arrays are.

● Conditionals for checking various set or element conditions
● Global variables and functions defined at the top level of the program. The program

executes linearly down the file. Functions are defined in called in a C style fashion.
● A standard library providing functions like print for usability.

Reserved Keywords:

● int
● float
● char

● boolean
● set
● for
● forEach
● in
● if
● else
● void

Data Types

Symbol Description

int Integer

float Float

char Character

boolean Boolean

[] Array

void Void

set Set

Operators

Symbol Description Returns

∩ (:n) Intersection Set

∪ (:u) Union Set

∈ (:i) Element of boolean

:c Complement Set

× Cartesian Product Set of Arrays

|Set| Cardinality int

+ Integer Addition int

- Integer Subtraction int

* Integer Multiplication int

/ Integer Division int

+. Float Addition float

-. Float Subtraction float

*. Float Multiplication float

/. Float Division float

Logics

Symbol Description

if/else condition

for/forEach in loop/iterate

Comparers

Symbol Description

< Less than

> Greater than

<= Less than or Equal To

>= Greater than or Equal To

== Equal To

Program Example

set subtract(Set A, Set B) {

return ​A​∩(B :c A);
}

set dotProduct(Set X, Set Y) {

if (​|X| != |Y|) return NULL;
int result = 0;
forEach element in X×Y{

result = result + element[0]*element[1];
}

}

boolean isSubset(Set X, Set Y){

if (​|X| < |Y|) return NULL;
forEach element in Y{

if (!(element ∈ X)) { return false;}
}
return true;

}

void main(){

Set A = { 1, 2, 3, 4 };
Set B = { 3, 4 };

Set C = subtract(A, B); // C = { 1, 2 }
boolean subset = isSubset(A, C);

if (subset) {int dotP = dotProduct(B, C);}
else {}

}

main();

