Grape (.grp)
Team members:

Edward Yoo, UNI: hy2506

James Kolsby, UNI: jrk2181
Michael Makris, UNI: mm3443

Nick Krasnoff, UNI: nsk2144
Timmy Wu, UNI: pw2440

Description:

Grape is a language that is designed primarily to solve problems in the graph theory
domain. It should allow the programmer to develop code that implements graph

algorithms like Dijkstra's, Prim’s and Kruskal's.

At the foundation of the language are edges. An edge is a container that points to

two nodes, linking them together. They can be either directed or undirected

"hello" -> "world"

Nodes can be any data type, and are not a type of their own. Everything is a node

except edges.

= "hello"
b =4

Q
|

Edges also contain a pointer to their own object, for instance an integer to

represent the cost of the edge

a-2-b

Graphs are described as a list of edges.

friends = [

james -1- "Tim" -3- "Nick",
"Michael" -2- "Ed" --



Types
Integer
Float
String
Boolean
Null

List
Dictionary
Edge

Graph

Operators

Assignment
Graph slice
Comparison

Arithmetic

int 10

float 3.14

str "Hello"

bool true/false
null

list [1 2 3]

dict {foo:1, bar:2}

edge (node -- node)
(node -> node)

list [a -1- b -2- c]

in

< > ==

+ - %/ 4

edge assignment:
Undirected: () -- (),
Directed: () -> ()

Precedence

Graph templating
Node wildcard
Node with type
Edge wildcard
Named node

Named typed node
Edge with nodes

Control flow
Scope {}

Loop for ..

Conditional if ..

Functions

fun <name> <arg> <arg> {}

I/0

{3
{3

print "Hello world"

An example program (shown on the next page) that a user might write would be

Dijkstra's Algorithm on the following graph, starting from vertex A

&
‘ 0

U
®

C

+ Z =
l {
' 11lr"”"’,4ﬂ‘-‘ ‘
T 9 I %



DIJKSTRA'S ALGORITHM

fun

fun

minDistance graph {
minValue = INF
min // Empty node

// Slice graph with template
for "a’ in graph {
if (a.dist < minValue &&

a.visited == false) {

minValue = a.dist

min = a

return min

dijkstra graph start {

for "a’ in graph {
INF
null

a.dist

a.prev

// Every node in graph

for *x' in graph {

current = minDistance graph

for ‘current -a- b’ in graph

newDist = current.dist + a

if newDist < b.dist {

b.dist = newDist

b.prev = current

current.visited = true

dijkstra myGraph a

// Initialize empty dicts
a,b,c,d,e,f,g,h:{}

myGraph = [
a -6- b,
a-1-c-2-d-1-e -1-f,
c -4- g -1-d,
d -1- f,
e -2- h

]



