
Fli-O: File I/O + String Processor
COMS W4115 (Fall 2018)

Matthew Chan (mac2474), Justin Gross (jg3544), Gideon Cheruiyot (gkc2112), Eyob Tefera (et2546)

Overview

Fli-O was developed to create a seamless way to for users to interact with files, especially large
documents that require additional processing. To avoid the confusion around buffers and input/output, we
plan to have one function for processing input and another for processing output that the user can
configure to their needs. These two functions do all the background work with opening and closing files
that other languages require multiple functions for. In short, we want to simplify the process of working
with file I/O and change it from a pain point to a hallmark of the language.

Furthermore we want to give users the ability to process these files and do additional operations
on these files while keeping the I/O process as simple as possible. Some processing that users would be
able to do include spell checking, file manipulation, search and replace, merging multiple files, splitting
files, as well as a whole host of string manipulation operations that would be commonly found in string
libraries. We would also design operators (*, =, +, -, etc.) around strings and files as shortcuts for string
and files common operations. For example, ‘+’ would merge two files or strings, ‘-’ would remove the
contents that differ between two files. We would also include built in spell checking of documents based
on a dictionary that we would provided or a user could supply their own. Our language will be written in
OCaml and then compiled into LLVM code.

Features:

● Strict keywords (File != file)
● Automatic memory allocation (no need for pointers)
● Static-typing (types must be specifically declared)
● Operations with strings and other types automatically get converted to strings
● Support for control statements (if, while, for)

Syntax

Syntax will be a mix of C and Python. Arrays are declared and initialized as in C (but no pointers!). We
will use C-style semicolons and braces for statement grouping.

Data Types

Keyword Description

bool Primitive boolean type

char Primitive character type

int, float Primitive numeric type, same as C

String String literal type

File Complex

Dict Key-value pair data structure

Comments

Syntax Description

// Single line comment

/* */ Multi-line comment

Operators

Notes:

● Arithmetic operations between an int and a float will result in a float through implicit type
conversion.

● + and * operators are valid between numeric and string types, similar to Python (i.e. “3” + 5 =
“35” and 4 * “cat” = “catcatcatcat”)

Operator Type Description

+, -, /, * int, float Arithmetic operators function as

is typical between same data
types.

+ String, File Concatenates two strings
together.

Appends two files together.

= All types Assignment operator

==, != int, float, String Equality operators (by value)

&&, || All types Logical AND and OR

&,|,^,- String, chars Regex operators

[] Array, String, File Array indexing operator

Keywords Description

if/else Basic control flow conditional expression

for/in Control flow iterative loop

while Iterative loop with conditional

empty Indicates nothing is to be returned

return Return expression

Example Code
Below are several examples of code written in our language to demonstrate syntax and code structure.

1. File manipulation

// Create a new text file

File f = open(“./newfile.txt”);

// Write a line to the file

f.write(“The quick brown fox jumped over the lazy dog.”);

// Get a word count for the file

int wc = f.count(“w”); // wc = 8

// Print the first n lines of the file

print(f.head());

print(f.tail(15));

// Move and rename the file

f.move(“~/newfolder/renamedfile.txt”);

2. Looping and conditionals

Dict primes;

int size = 50;

// Initialize the values in a dictionary

for (n in range(0, size)) {

primes.add(n, 1);

}

// Sieve of Eratosthenes

for (entry in primes) {

if (entry.second == true) {

int num = entry.first;

for (i in range(num * num, size, num)) {

// Remove non-primes from the dictionary

primes.remove(num.second);

* }

}

}

3. Spell check a file

File f = open(“./badspelling.txt”);

String dictionary[50];

dictionary[0] = “Aardvark”;

dictionary[1] = “Aardwolf”;

// Add more entries here...

// Spell check the file using a given dictionary

Dict errors = f.spellcheck(dictionary);

if (errors.size() > 0) {

for (error in errors) {

print(“Misspelled word “ + error.first + “ on lines “

+ error.second.join(“,”));

// Output: “Misspelled word asdf on lines 11,57,90”

}

}

