BitTwiddler

a language for binary data parsers

Project Proposal

Programming Languages and Translators
COMS W4115 — Fall 2018
Bruno Martins — bm2787

Motivation

Parsing binary data is tricky, especially in high level languages. Python, for example,
makes the programmer deal with the cumbersome struct module. The C language makes it
somewhat easier to map individual bytes or fixed-size chunks of bytes into structures, as long
as the programmer takes care of the alignment carefully. Reading in variable-sized items,
however, is more complicated. Parsing self-describing binary data can get ugly fast.

Description

BitTwiddler's primary goal is to make it easy to describe and read binary-encoded
data in any format and then parse it into a textual format of the programmer's choice. In

order to achieve this goal, BitTwiddler was designed to be a data-centric programming
language. It's main feature is the template: an object with typed fields and embedded code to
build its members.

Features

* Concise and descriptive code that reads almost as documentation on the binary data
being parsed;

» First class functions and types;
» Strong type checking, with reasonable automatic casts;

» All programs read from the standard input and write their results to the standard output,
debug/log/info/error messages are written to the standard error output;

» Automatically reads from standard input into variables with no assigned value;

* Basic integral types with different bit widths;

Comparison with other languages

Consider a game that stores a character’'s name and health as follows (read from stdin)
and parsers in three different languages that output a JSON object.

Ox06 | ‘M’ |‘a’|“r’ ‘v’ |1’ |°n’ | 0x42 | Ox00 0x00 | Ox00

Character’s name Character’s health
Python // C
from struct import unpack #include <stdio.h> // printf
from sys import stdin #include <stdint.h> // uintXX_t
#include <stdlib.h> // malloc
n = unpack('B', stdin.read(1))[0] #include <unistd.h> // read
name = unpack('%ds' % n, stdin.read(n))[0]
health = unpack('I', stdin.read(4))[0] int main() {
uint8_t n;
print('{"name":”%s”,"health":%d}"' % read(0, (void*)&n, sizeof(n));
(name, health)) char *name = (char*)malloc(n+1);

read(0, (void*)name, n);

name[n] = 0;

uint32_t health;

read(0, (void*)&health, sizeof(health));

printf(“{\”name\”:\”%s\”,\”health\”:%u}\n”,
name, health);

free(name);

return 0;

BitTwiddler

Reads from stdin automatically.

Declaring without assignment: reads from stdin.
Array declared in terms of previous fields.
Defaults to native byte order.

parse {
n:uints;
name:uint8[n];
health:uint32;

H OH K R

emit(‘{°); # emit writes to stdout.
emit(‘”name”: “{name}”,’); # Automatic formatting from uint8[] to string.
emit(‘”health”: {health}’); # And from uint32 to string.

emit(‘}’);

Data Types

Type Description
{u}int8{le,be} Integer types. Unsigned if prefixed by u, signed otherwise. Can be
{u}int16{le,be} suffixed with le (little endian) or be (big endian). If the suffix is not
{u}int32{1le,be} specified, native endianess is assumed.
{u}int64{1le,be}

float32, float64

Floating point numbers, 32- or 64-bit wide.

bit

Single bit.

string Single or several characters. Example: hello: string = "world".
Type A basic type or a template type.
Array<type> Array of elements of type type.

Func<r, ai1, a2...>

Function that takes arguments of types al, a2... and returns a
value of type r.

Template Base type for all templates.
None Unit type, analog to the () type in OCaml.
Keywords

Keyword Description
parse The entry point of a program. Must be present exactly once.
template Used to declare templates, akin to dict in Python, but smarter.
- Means self inside a template, means any in match.
func Declare a function.
return Return early from a function.
if, else Conditional execution.
for, in Iteration over all items of an iterable.
match Pattern matching (similar to Rusts's match operator).
-> match arm.

Type annotation.

H End of statement.
@ Prevent embedding a field into a template.
{1} Code block delimiter.
Comment.

string delimiters.

Operators

Operators Description
+ -/ % Arithmetic plus, minus, divide, multiply, remainder (numbers).
+ Concatenate (strings or arrays).

<< >> | & ~

Bitwise shift left, shift right, or, and and not, respectively.

and or not Boolean and, or and not, respectively.

< <= == >= > Number comparison.

== Equality (string).

= Assignment.

[] Access an element of an array or field of a template.

Access a template field.

Built-in functions

Function

Description

emit: Func<None, string>

Writes to stdout.

print: Func<None, string>

Writes to stderr.

fatal: Func<None, string>

Writes to stderr and ends the program
immediately.

typeof: Func<Type, type>

Returns the type of a variable.

len:
Func<uint64, string>
Func<uint64, Array<type>>
Func<uint64, Template>

Returns the length of a variable:
For strings, the number of characters;
For arrays, the number of elements;
For templates, the number of fields;

enumerate:
Func<Array<Array<uinté4, type>>,
Array<type>>

Returns an array of two-element arrays: the
first element is an index into v, the second
element is the value at that index.

map: Func<
Array<type2>,
Array<typel>,
Function<type2, typel>>

Maps elements of an array a of type type to a
function f that accepts one argument of type
type. Returns an array of type type2, which is
f's return type.

join: Func<string, string, Array<string>>

Concatenate strings in the second argument
interspersed with the string in the first arg.

Example Program: self-describing binary data

Consider a hypothetical computer game that stores character attributes in self-describing
binary files, and the following content for one of these files encoding a character's name and
experience (numbers are in hexadecimal):

82 |60/04|'n'|'a'|'m'['e’ |01]02|'x'|'p' @3/ 'A’ 'n'| 'n'|64 00|00 0O
Two fields First field Second field First field Second field
type O = string type 1 = uint32 value value
name = “name” name = “xp” "Ann" 100
template AttrString { # Represents an encoded string
@len : uint8; # len will not be a field of AttrString
_ : uint8[len]; # AttrString will be an "alias" to uint8[]
}
template AttrDesc { # Attribute Description
@typeCode : uint8;
type : Type = match typeCode { # If there's no match, the program aborts with an error
0x00 -> AttrString;
0x01 -> uint32;
3
name : AttrString;
}
template Character(attrs:AttrDesc[]) {
for attr in attrs { # Character's field names will come from strings
attr.name : attr.type; # Auto type conversion: AttrString -> uint8[] -> string
}
}
parse { # Entry point
numAttrs: uint8; # Reads in the number of attributes
attrs: AttrDesc[numAttrs]; # Reads in the attribute descriptions
character: Character(attrs); # Reads character info based on attribute descriptions

emit('{');
for [1, attr] in enumerate(character) {
emit('{attr}:"');
match typeof(character.attr) {
AttrString -> emit('"{character.attr}"');
uint32 -> emit('{character.attr}');

}

if 1 < len(character) - 1 { # len of a template is its number of fields
emit(',");

}

}
emit('}\n');

Example Program: gcd

func gcd:uint64 (a:uint64, b:uint64) {

if b==0 {
a; # return keyword is not necessary
} else {
gcd(b, a % b);
}
}
parse {
a : uint32; # Read inputs from standard input
b : uint32;
r = gcd(a, b); # Automatic upcast uint32 -> uint64, automatic type for r (uint64)

emit('gcd({a}, {b}) = {r}\n");

	Motivation
	Description
	Features
	Comparison with other languages
	Data Types
	Keywords
	Operators
	Built-in functions
	Example Program: self-describing binary data
	Example Program: gcd

