bawk Language Reference Manual

Ashley An (aya2121), Christine Hsu (chh2132), Mel Sawyer (ms5346), Victoria Yang (vjy2102)

Table of Contents

Introduction

Lexical Conventions
Identifiers
Literals
Array
Integer
String
Regex
Comments
Keywords
Operators
Regular Expressions
Regex Operators
Regex & string matching

Types
Data Types
Type Checking

Special Features
File 110
BEGIN, END, and LOOP Blocks
Config File
Compilation

Standard Library Features
Functions

Sample Programs
Word Frequency
Regular expression matching

© 0 oo W 00 N O W W WNDNMNDNMNDMNMNDNDMDDND D

10
10
10

10
10

12
12
12

Introduction

bawk is a text processing language based off of awk. awk is best suited for dealing
with files formatted into rows and columns, but our goal is to create a text processing
language that can easily be applied to plain text files. bawk aims to make it easy to
read, analyze, and write to text files in a simple and intuitive syntax mimicking that of
awk.

In bawk, programs are made up of four blocks (three of which are required but can be
empty). These blocks can contain functions, statements, or expressions. An expression
in bawk has a value — for example, assignment, initialization, and all operators.
Statements do not have values and are executed in sequence as a method of control
flow — for example, loops, if statements, and function declarations.

Lexical Conventions

Identifiers

Identifiers are primarily used for variable declaration or function declaration, and can be
any combination of numbers, letters, and the _ symbol as long as the resulting string
isn’t an existing keyword.

Valid Invalid
myVariable lvariable
my_variable function
myVariablel my.variable
_ My-variable
Literals

We have 4 types of literals: array literals, integer literals, string literals, and regex
literals.

Array
Array literals are defined as follows:

arr[]l a =1[1, 2, 3];
Integer
Integer literals are defined as a sequence of one or more digits representing an integer,

with the leading digit being non-zero (i.e. [1-9][0-9]%).

int x = 100;

String

String literals are defined as a sequence of ASCI| characters enclosed by a pair of

double quotation marks.

string s = “Hello”;
Regex

Regex (regular expression) literals are denoted with a rgx type and enclosed in a pair of

single quotation marks.

1 I

rgx example = ‘p.n’;

Some of the syntax of regex is listed in the “Regular Expressions” section below.

Comments
Comments are denoted as follows:

Your comment here

There are no multi-line comments.

Keywords
Type Description Example
if..else | if...else denotes a conditional int x = 0;
statement. if (x < 10){
X++:
}
else{
print(x);
}
for (...) for loops through a block of for (int i = 0; i <10; i++) {
code a number of times print(x);
specified by a corresponding h

number of iterations.

There are 2 possible structures
for what is contained in the
parentheses:

1) For a normal for loop, the
parentheses must contain 3
statements delimited by
semicolons. The first segment

for (int i in array) { .. }

for ((int k, string v) in map { .. }

contains the declaration and
initialization of a counter
variable, the second is the
condition under which the for
loop will continue looping, and
the third is what happens to
the counter variable after each
iteration.

2) bawk also offers an
enhanced for loop to iterate
over arrays and maps using the
keyword “in”. For arrays, bawk
requires declaring a variable
and its type that matches the
type of the array, followed by
“in” and the name of the array.
For maps, bawk requires
declaring a (key, value) tuple
initialized with the same types
as the key and value of the
map, followed by “in” and the
name of the map.

Variables declared inside a for
loop (within both the condition
and body) are locally scoped
within the brackets that define
the for loop.

while while loops through a block of | int x = 0;

(...) code until its corresponding while (x < 10) {
conditional expression is not print(x);
met. X++;
Variables declared inside the }
while loop are locally scoped
within the brackets that define
the while loop.

in A keyword used in enhanced for (int i in array) { ..}
for loops to iterate over all . . .
elements in an array or (key, for ((int k, string v) in map { ..}
value) elements in a map.

CONFIG | Denotes the beginning of the CONFIG {

configuration block which can RS = ".°
be used to redefine FS and RS) FS = *,°
BEGIN Executed once at the beginning | BEGIN {
of the program before the first function int add(::Lnt a, int b){...}
input is read. Function) function int mul(int a, int b){...}
declarations can only occur in
the BEGIN block, but they can
occur anywhere in the block.
Variables declared in the
BEGIN block are global across
all blocks.
LOOP Code inside the LOOP blockis | LOOP {
continuously executed until the print($1);
file is completely read through. 1
END Executed once at the end of the | #arr[] a is instantiated and
program. You cannot declare #functions are called on it in
any new functions in END. #BEGIN and LOOP
END {
print (a);
}
function | function denotes how the user | function int add(int x, int y) {
starts a function declaration; an return x +vy;
explicit return type is required. b
Nested functions are not
allowed.
return Returns data type at the end of | function int add(int x, int y) {
a function. Will halt execution return x +y;
and any code after return h
statement does not run.
RS A built-in string variable forthe |RS = “\r\n’
“record separator”. The default
value is a newline character,
but this can be changed in the
CONFIG block.
FS A built-in string variable for the | # Fields within a record should be

“field separator”. The default
value is a space, but this can be
changed in the CONFIG block.

separated by commas.
FS =",

NF A built-in special variable that | # Checks if the number of fields
retrieves the number of fields in | # in the current record is greater
the current record that is being | # than 2.
read in LOOP. if NF > 2
S A special variable that retrieves | $0 # refers to the whole record
the string field in the current $1 # first field in current record
record specified by the number |$2 # second field in current
after S. record
true A boolean keyword that means | boolean flag = true;
something is true. if (flag){
print(“hello”);
}
false A boolean keyword that means | boolean flag = true;
something is false. int x = 6;
if (x>5){
flag = false;
}
if (!flag){
print (“x is greater than 5");
Operators
Type Description
+ + is used for the addition of integers.
& & is used for string concatenation,
e.g.string s = "hello” & "“world.”
&& && represents logical AND, e.g.

int i = 5;

print (i);
}

if (i =588 i < 6){

int i = 5;

print (i);
}

|| represents logical OR, e.g.

if (1 <6]]1i>10{

- is used for the subtraction of integers.

*is used for the multiplication of integers.

/ is used for the division of integers.

++ and -- are used for the incrementation and decrementation
respectively of integers by 1.

+=and -= are incrementation and decrementation of integers
respectively by a specified integer,e.g. x += 5

() is used to read from or write to arrays at a certain index, e.g.:

if (arrayl[0] == 5){
return array[0];

}

{} is used to read from or write to maps elements with a given
key, e.g.

map: {2 : “yo”, 3 : "hey”, 5 : “hello"}
if (map{5} == “hello”) {

return true;
}

returns true

X <=y

The operator <= is used for string or integer comparison and
returns a boolean that indicates if x less than or equal to y.

X=>y

The operator => is used for string or integer comparison and
returns a boolean that indicates if x greater than or equal to y.

X<y

The operator < is used for string or integer comparison and
returns a boolean that indicates if x less than y.

X >y

The operator > is used for string or integer comparison and
returns a boolean that indicates if x greater thany.

The operator == is used for string, integer, or boolean

comparison and returns a boolean that indicates if x is equal to y.

The operator !=is used for string, integer, or boolean comparison

and returns a boolean that indicates if x not equal to y.

I=is the logical not operator.

; indicates the end of an expression.

Regular Expressions
Unlike traditional awk, bawk introduces the concept of the regular expression type,

indicated by rgx example = "t.x’

Regex Operators

X~y

String x matches the rgx denoted by vy.

X!~y String x does not match the rgx denoted by v.
x %y Rgx x equals the rgx denoted by .
x 1%y Rgx x does not equal the rgx denoted by vy.

Regex & string matching

Type Description

/and/ Indicates the beginning and end of pattern to search for
Replaces any character in the input string (ex. p.n would look for
pan, pbn, etc.)

N Finds records starting with entry (ex. AX would look for sentences
starting with a capital X)

S Finds records ending with entry.

Note that this is different from the S special variable when defined
in a regex expression enclosed in single quotes.

(]

Bracket expression: matches any character within brackets

(A..)]

Complementary bracket expression: does not match any of the
characters within brackets

Alternation operator: allows alternatives (e.g. ‘hilbye’ would look
for either hi or bye

Allows a symbol to be repeated as many times as possible to find
a match (ex. ab*c would look abc, abbc, abbbc, etc.)

Types

Data Types

Type Description

int Integer.

string Ordered list of characters.

bool Boolean value that can be assigned true or false.

rgx Regular expression type. See the “Regular Expression” section
for more information about how to create and use these types.

int(] Series of ordered values of type int. Dynamically resizable.

string(] Series of ordered values of type string. Dynamically resizable.

bool(] Series of ordered values of type bool. Dynamically resizable.

rgx(] Series of ordered values of type rgx. Dynamically resizable.

map<type, type>

Stores key and associated value. Key and value can be any type
and can be different from each other, and are determined by the
types in the triangle brackets (first for key, and second for value).
Similar to associative arrays, implemented using hcreate_r.
Dynamically resizable.

int[Jarrl =]
string(] arr2 =]
bool(] arr3 =[]
rgx(] arrd = (]

Initialize an empty array where the type of the array is declared
before the name of the array. If a value with incorrect type is
added, an error is thrown.

map<type, type>
name = {}

Initialize an empty map where the variable name is name and the
types of the key and value are determined by the types declared
in the triangle brackets. If a pair with incorrect type is added, an
error is thrown.

Ex: map<int, string> alpha = {}

A map literal can be represented as a series of key : value pairs
separated by commas, e.g.
{‘] : “a”, 2 : K(b", 3 : “C”’ 4 : “d”, 5 : Ue”}

https://linux.die.net/man/3/hcreate_r

10

Type Checking
bawk is strongly typed language. This means that each data type is predefined as part

of the language, and these predefined data types must be used to describe all
constants or variables in a given program.

Special Features

File I/O

Both awk and bawk read files through the standard input. This can either be passed as
a parameter or piped through another program. A file must be passed as the
command-line argument to a bawk program, otherwise a “file not found” error will be
thrown.

Example:
./bawk_test < test.txt | ./bawk_test2 > output.txt

The output of bawk will be sent to standard out. This output can be piped to the input
of another bawk program. Input is read in automatically, and each line is split into fields
which can be accessed using the Sn special variable.

BEGIN, END, and LOOP Blocks

Functions should be declared in BEGIN, and no code can be written outside of these
three blocks. The LOOP block between the BEGIN and END blocks should loop through
the entire file.

Config File
A config file can be included to change the two built-in variables RS and FS (both are
described above in the Keywords section).

Compilation
The program will be compiled into an executable. An input file must be piped into the

newly formed executable to run it (see File /O Section).
Standard Library Features

Functions
int string_to_int(string a)

This function converts a string into an int provided that the string follows the regex
(0-9)*.

11

string int_to_string(int a)
This function converts an int into a string.

int length(arr[] a)
This function returns the length of the array a.

int size(map a)
This function returns the size of the map a.

arr keys(map a)
This function returns an array of the keys of map a.

arr values(map a)
This function returns an array of the value of map a.

bool contains(varl, arr[] a):

This function is used to check if value is present in array or map. This can also be used
to determine whether an array index has been assigned or not. Returns true if item in
array, false otherwise, e.g.:

if (!contains($0, array)) {
array[length(array) - 1] = $0
}

int indexOf(arr[] a, var)
Returns the index of the first instance of var within the array a by value. [f varis not
in a, return -1.

arr[]l a = {1, 2, 3, 2};
a.contains(2) # returns 1
a.contains(@) # returns -1

void print(varl, var2, ..)
This function prints any number of inputs, separated by a space. print() can take
parameters of different types, as long as the different types are separated by a comma.
Examples of this distinction shown below:
print(“hello”, 1.2, 3)
outputs:
hello 1.2 3

print(“hello” + 1.3, 2)
throws an error because a string cannot be added to a float.

void println(varl, var2, ..)
This function prints any number of inputs, separated by a newline.
println(“hello”, 1.2, 3)
outputs:
hello
1.2
3

Sample Programs

Word Frequency
This program stores each unique word in a file as the key in an
associative array and the number of times it appears in the file as
the value.
BEGIN {

map wordmap = {};

void function addToMap(map wordmap, int i) {

if (wordmap.contains(i)) {
wordmapl[i] += 1;

}
else {
wordmapl[i] = 1;
}
}
}
LoOP {
Loop through all fields (words), store in word map
for (int i = 1; i <= NF; i++) {
addToMap(wordmap, $i);
}
}
END {

for (int i = 0; i < length(keys(wordmap)); i++) {
print (keys(wordmap)[il, wordmap[keys(wordmap)[il]l)
}

12

13

Regular expression matching
This program searches every record for lines starting with an integer and replaces them

with an empty string. Then it prints each line with no integer at the beginning.

BEGIN {
}
LOOP {
rgx reg = ‘'[0-9]1x";
if ($1 ~ reg) { # if the first line is an integer
for (int i=2; i < NF; i++){
print($i & “ “);
}
}
else {
print($0); # prints entire line
}
}
END {

