ZEN

Language Reference Manual

Eleanor Murguia (egm2142)
Zoe Gordin (zeg2103)
Nadia Saleh (ns3659)



Introduction

ZEN is language that allows users to write algorithms to create fractals and other
geometric patterns. ZEN implements most standard C types and operators. ZEN
follows a Java-like syntax but refrains from being object-oriented. Instead, ZEN
provides built-in functions that allows users to create and combine geometric
shapes.

Keywords

Keyword Description

while While loop

for For loop

if If statement

else Else statement

return Return function expression
func Declare a function
Comments

Comments are single-line, and are indicated with the “#” symbol.



Delimiters

delimiter usage
) encloses tuples, defines order of
operation, and contains arguments of
function calls
[] array initialization, assignment, and
access
{} scopes code
; end of statement
) separates elements in tuples and
arrays, and arguments in function calls
whitespace for readability only, ignored by
compiler
Operators

In order of decreasing precedence

operator associativity description

() [1] left-to-right function call, list indexing

- right-to-left logical and numerical
negation

* /% left-to-right multiplication, division,
modulo

+ - left-to-right addition, subtraction

l= == <= >= left-to-right boolean not equal,

equal, less than or
equal, greater than or
equal, less than, greater
than




and or left-to-right logical AND and OR
= right-to-left assignment
left-to-right accessing methods of
built in types
Primitive Types
type description example
int integer int x = 2
float float, must include a digit | float x = 2.5
before and after the
decimal place
bool single byte boolean false
string string “zen”
Non-Primitive Types
tuple a pair of elements (x, VY)
list left-to-right [2, 4, 8]

Operations for Tuples

Tuples provide two functions to get the x and y values, respectively:

tup.getX()
tup.getY()

Operations on Lists

Lists provide operations to return the length, modify the list, and return values

from the list:




1li.length()
li.get(int idx)
li.remove(int idx)
li.add(type element)

Control Flow

Statements

Statements include variable declaration and assignment, and always end with a

" n

semicolon (“; ).

float flo = 3.14;

Conditionals and Loops
If/else statements, for loops, and while loops are all standard. If statements do
not require an else following them.

if(x !'= 5)
{

y =y +1;
}
else
{

y=y+2
}

Conditionals and loops are always enclosed in curly braces (“{}"). Both for
loops and while loops are included in the language.

int i;
float flo = 1.5;
for(i = 0; i<3; i++)



flo = flo + 0.5;

}
int a = 5;
while(a < 7)
{

a=a*+2;
}
Functions

User Defined Functions
Users of ZEN can define their own functions with the following syntax:

func function_name(typel argl, type2 arg2){ #function body
}

Functions do not have a return type explicitly declared, but users can use the
return keyword to return a value from the function.

Built In Functions

In addition to user defined function, ZEN has several built in function to assist in
the creation of drawing shapes and fractals.

make_circle(int radius)

make_circle takes an integer corresponding to the radius of the circle that will
be drawn.

make_ngon(int sides, int height, int width)

make_ngon takes three integers corresponding the number of sides of the ngon
and the height and width of the ngon to be drawn.



ZEN also includes utility functions:
print(string output)

print takes one string that will be printed out to the console.



