Typescript-on-LLVM
Language Reference Manual

Ratheet Pandya
UNI: rp2707
COMS 4115 HO1 (CVN)

1. Introduction

2. Lexical Conventions
2.1 Tokens
2.2 Comments
2.3 Identifiers
2.4 Reserved Keywords
2.5 String Literals
2.6 Operators
2.6.1 Associativity
2.7 Other Separators

3. Expressions
3.1 Operator Expressions

3. Statements
3.1 Conditionals

3.2 Looping

4. Functions
4.1 Function Definition

5. Variables and Constants
5.2.1 The let keyword
5.2.2 The const keyword

6 Types
6.1 boolean

6.2 number

6.3 string
6.5 void

6.4 Array

References

1. Introduction

This manual describes the Typescript-on-LLVM Language, as described in the project proposal.

In the following | borrow heavily from the language, format, and structure used in The C
Programming Language, Second Edition (Kernighan and Ritchie, 1988) since many of same
syntactic and semantic rules for C apply to Typescript-on-LLVM.

2. Lexical Conventions

2.1 Tokens

There are six kinds of tokens:
Identifiers

Keywords

String literals
Operators

Other separators

Whitespace (defined here) and comments (described below) are ignored except as they
separate tokens:

e Blanks

e Horizontal and vertical tabs

e Newlines

Some whitespace is required in order to separate otherwise adjacent identifiers, keywords, and

constants. If the input stream has been separated into tokens up to a given character, the next
token is the longest string of characters that could constitute a token.

2.2 Comments

Comments begin with the characters /* and end with the characters */. Comments do not nest
and do not occur within string literals.

http://www.cs.columbia.edu/~%20sedwards/classes/2018/4115-fall/proposals/Typescript-on-LLVM.pdf

2.3 Identifiers

An identifier (or name) is a sequence of letters and digits with the following properties:
e The first character must be a letter or an underscore (*_’).
e Identifiers are case-sensitive.
e Identifiers may have any length.

Generally, identifiers are names that are bound to functions or variables in a scoped
namespace, as explained below.

2.4 Reserved Keywords

The following identifiers are used as keywords, and may not be used otherwise:

and
boolean
const
else
false
for
function
if

let
null
number
or
return
true
string
void
while

2.5 String Literals

A String Literal is a sequence of one or more characters enclosed in double-quotes, e.g. “foo”.
In order to include a double-quote in a string constant, the escape character slash (‘\') may be
used. To include a slash in a string, use another slash, e.g. “\\x” may be used to represent the
literal string “\x”.

2.6 Operators

Typescript-on-LLVM only supports binary operators. The table below summarizes the operators

supported:
Operator Use
+ Arithmetic addition
- Arithmetic subtraction
* Arithmetic multiplication
/ Arithmetic division
= Assignment
I= Not-equal boolean comparison
< Less-than boolean comparison
<= Less-than-or-equal-to boolean comparison
> Greater-than boolean comparison
>= Greater-than-or-equal-to boolean comparison
== Equals boolean comparison

2.6.1 Associativity

The assignment operator, ‘=, is right-associative.
with the following rules:
= takes precedence over ! =

+ takes precedence over -

[]
[]
[]
e * takes precedence over /

The remaining operators are left associative,

The following operators are in precedence order, left-to-right: < > <= >=

2.7 Other Separators

The other separator tokens include:
e the semicolon ‘;’ for sequencing of statements
e the comma, ‘, for separating items in an array
e curly braces, ‘{*and ‘}’ for block-scoping
e parentheses, ‘ (‘and ‘)’ for parameter lists in function definitions

3. Expressions

Expressions refer to program code that may be evaluated in a particular scope. There are two
two kinds of top-level expressions: primary and postfix.

Primary expressions have the following form:

primary-expression:
identifier
boolean-value
number-value
string-value

Postfix expressions group operators left-to-right:

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-list,,;)
argument-expression-list:
assignment-expression-list
argument-expression-list , assignment-expression

Assignment expressions are covered in Section 3.1.

As shown here, array indexing is done via a postfix expression in which the expression inside
brackets resolves to the integer index of the array.

Similarly, function calls are postfix expressions that contain zero or more argument expressions
within parentheses.

3.1 Operator Expressions

For the non-assignment operators described in Section 2.6, the following forms are used:

binary-expression:
expression + expression
expression - expression
expression * expression
expression / expression

conditional-expression:

expression < expression
expression > expression
expression <= expression
expression >= expression
expression == expression
expression and expression
expression or expression

Assignments take the following form:
assignment-expression:
identifier = primary-expression ;

identifier : type-specifier = primary-expression ;

Assignments are described in more detail in Section 5.

3. Statements

Statements are sequences of expressions, and have the following form:

statement:
expression-statement
compound-statement
conditional-statement
loop-statement

expression-statement:

expression,, ;
compound-statement:

{ statement-list,,, }
statement-list:

statement

statement-list statement

Conditional and loop statements are defined in Section 3.1 and Section 3.2, respectively.

3.1 Conditionals

Conditional statements allow for flow control based on the boolean value of a given conditional
expression:

conditional-statement:

if (conditional-expression) compound-statement
if (conditional-expression) compound-statement else compound-statement

For example:

if (x < y) |
print (x) ;

}

if (x> y) |
print (y);

} else {
print (x);

}

3.2 Looping

Looping is supported using the while construct, and has the following form:

loop-statement:
while (conditional-expression) compound-statement

For example:

while (x < 100) {
printAndIncrement (x) ;

}

4. Functions

Functions are optionally parameterized scoped blocks of code that are given identifiers in the
global namespace.

4.1 Function Definition

Function definitions have the form function D : T compound-statement, where
e D has the form D’ (parameter-list)
o D’ denotes the identifier for the function
e T denotes the return type of the function

The syntax of parameters is:
parameter-list:
parameter-list

parameter-list , parameter-declaration

parameter-declaration:
identifier : type-specifier

For example:

function add(x : number, y : number) {
return x + y;

}

Here:
e add corresponds to D’ above
e x : number, y : number isthe parameter-list
e {return x +y; } is the compound-statement

5. Variables and Constants

Variables and constants are bindings of expressions that may be assigned to identifiers in a
scoped namespace.

5.2.1 The 1let keyword

The 1et keyword is used to define a scope for an expression and assign that expression to a
variable.

let assignment has the following form:
let-expression:

let assignment-expression

For example:

let s = "Hello world!";

5.2.2 The const keyword

A constant is an immutable binding of an identifier to a value. Constants are declared using the
const keyword, which binds an expression to a constant (non-reassignable) identifier.

const assignment has the following form:

const-expression:
const assignment-expression

For example:

const s = "Hello world!";

6 Types

A type constrains the value of an expression to adhere to a particular space of values. There are
five fundamental types in Typescript-on-LLVM, namely: boolean, number, string, void, and
Array.

The type-specifiers are:

type-specifier:
boolean
boolean](]
number
number []
string
string|]
void

These types are defined below.
6.1 boolean

A value has boolean type if it is either true or false.

6.2 number

All numbers in Typescript-on-LLVM are floating-point values consisting of decimal literals,
represented as a sequence of digits, optionally followed by a single ‘.’ and a trailing sequence of
digits. Hexadecimal values are not supported.

Examples of numbers are 1, 3.14, etc.
6.3 string

A String is a sequence of one or more characters enclosed in double-quotes, e.g. “foo”. In order
to include a double-quote in a string constant, the escape character slash (') may be used. To
include a slash in a string, use another slash, e.g. “\\x” may be used to represent the literal string

“X”.

10

Examples of strings are: “x”, “foo”, “foo bar baz”, etc.

6.5 void

The void type is used to indicate the absence of a value being returned from a function.

For example:

function sleep(): void {
/* L. */
}

6.4 Array

An Array is an indexable collection of values of the same type.
It may be declared using 1et or const, as described in Section 5.

For example, to declare an array of numbers:

let values: number[] = [1, 2, 31;

11

References

In preparing this LRM and the scanner/parser code, | consulted the following:

Kernighan & Ritchie, The C Programming Language, Second Edition, 1988.
Parsing with ocamllex and Menhir

Menhir Reference Manual

ocamlyacc Tutorial

The MicroC Compiler code on the class website (referenced in Piazza)
ANSI C yacc Grammar

12

http://s3-us-west-2.amazonaws.com/belllabs-microsite-dritchie/cbook/index.html
http://dev.realworldocaml.org/parsing-with-ocamllex-and-menhir.html
http://gallium.inria.fr/~fpottier/menhir/manual.html
https://courses.softlab.ntua.gr/compilers/2015a/ocamlyacc-tutorial.pdf
https://piazza.com/class/jl8c4deopzemm?cid=112
http://www.quut.com/c/ANSI-C-grammar-y.html

