
Grape Language Reference Manual
2018 Fall Programming Languages and Translators

James Kolsby jrk2181
Nick Krasnoff nsk2144
HyunBin Yoo hy2506
Wu Po Yu pw2440

October 13, 2018

1. Introduction

Graph algorithms are an extremely ripe domain for networks and relationships of data.

Graph algorithms can be very useful in a wide range of applications, including databases,

network flow problems, and even language parsing using finite automata. Grape is a

language that is designed to make the assembly and manipulation of graphs much more

visually comprehensible and syntactically convenient. It should allow its user to

implement programs like the Minimum mean cycle canceling algorithm or Kruskal’s

algorithm easily and concisely. Quick graph descriptions and pattern searching are among

the optimizations of the language.

2. Data Types

2.1. Primitive Types

Int - A 32-bit signed integer designated by a series of digits

Bool - A 1-bit boolean designated by True or False

Float - An signed double precision flowing number designated by a sign, a

decimal and an exponent.

String - A series of characters that are enclosed in double quotes

"1

2.1.1. Examples of Primitives

Int i = 1;

Bool b = False;

Float pi = 3.14;

String name = "Stephen";

2.2. Reference Types

List - A collection which is ordered and mutable. It is designated by a series

comma-delimited expressions enclosed in square brackets, like so:

List a = [1,2,3];

List b = ["Hello", "World"];

Dict- An unordered and mutable dictionary of values mapped to keys. It does not

allow duplicate keys. A dictionary is designated by a comma-delimited set of key

value pairs, mapped by colons, enclosed in curly brackets, like so:

Dict d = {foo: 1, bar: 10}

Dictionary values can be set or accessed using their key, like so:

d.city = "Charleston"

2.3. Graph Types

Node - A node is a container representing a vertex in a graph, designated by an

expression enclosed in single quotes, like so:

Node a = '3';

Node b = '"Hello"';

"2

Edge - An edge is an object that represents a directed relationship between two

nodes, designated by an expression enclosed in hyphens with a closing bracket

representing its directionality. As with a node, the expression contained in an edge

can be of any type, for instance an integer containing a cost of traversing that

edge. For instance: Edge a = -3->;

An edge contains references to two nodes, a source and a destination. These nodes

can be set or accessed as follows:

Node a = '1';

Node b = '42';

Edge c = -3->;

c.to = a;

c.from = b;

Graph - A graph is a collection of Nodes and Edges that can be interconnected or

disjoint. Graph initialization is designated by a space-delimited path of nodes and

edges, enclosed in double angle brackets, like so:

Graph x = <<'"Atlanta"' -4-> '"New York"'>>;

Graphs can contain any Nodes of any type, and can mix types. More complicated

graphs can be described using a comma-delimited series of paths. Reference names

can be passed into the graph.

Node a = '"Atlanta"';

Graph cities = <<a -5-> '"Charleston"', a -30-> '"New York"',

a -100-> '"San Francisco"'>>;

"3

Graph initialization can be used to describe paths wherein two edges share a

common node between them, for instance:

Graph path = <<'1' -30-> '2' -40-> '3'>>

These paths are evaluated from left to right, where the from of each subsequent

Edge is the same as the to of the Edge preceding it. In the above example, the

Nodes containing Integers 1 and 3 are both connected to the node containing '2'

via the Edges containing 30 and 40 respectively.

Undirected edges can be expressed in the context of a graph using the --

shorthand. They are evaluated as a pair of directed edges pointing to both of the

nodes, like so: <<'1' -- '2'>>

3. Operators and Expressions

3.1. Variable Assignment

The = operator is used for a variable assignment. The right-hand expression is

evaluated and its value is assigned to the left-hand typed ID. LHS and RHS must

have the same type. This operator will be evaluated right-to-left.

3.2. Arithmetic Operators

The arithmetic operators are % (Modulo), ** (Exponent), * (Multiplication), /

(Division), + (Addition) and - (Subtraction). They are all binomial operators.

The minus sign can also be used as a unary operation to invert a number's sign

(Negation).

3.3. Relational Operators

"4

The relational operators are < (Less than) > (Greater than) <= (Less than or

equal to) => (Greater than or equal to) == (Equal to) != (Not equal to). They

are evaluated from left to right. They each require two values which are to be

compared and will return True if the comparison is truthful and False otherwise.

3.4. Boolean Operators

The logical operators are not, and, and or. Not negates the subsequent boolean,

while and and or both return the logical comparison of the values on either side of

them, like so:

Bool t = True

Bool f = False

Bool yes = t or f

Bool no = not t

3.5. Graph Operations

The & operator returns the graph which is the union of two graphs.

Node atl = '{city: "Atlanta", state: "Georgia"}';

Node la = '{city: "Los Angeles", state: "California"}';

Graph southeast = <<atl -305- '"Charleston"',

 atl -381- '"Durham"',

 atl -662- '"Miami"',

 atl -108- '"Auburn"'>>;

Graph southwest = <<la -100- '"San Francisco"'>>;

Graph usa = southeast & southwest & <<la -3000- atl>>;

"5

The in operator performs a search of a graph given a template. It does not alter

the input graph and returns a List of all matches of that template.

List cities = /''/ in usa;

List trips = /--/ in usa;

3.5.1. Template Searching

Template searching is a key feature of Grape which provides a flexible

means of finding structures within a Graph. Templates are very similar to

graph constructions, however they represent a pattern against which the

graph will be searched. They are enclosed in forward slashes, and can

contain references to Node and Edge instances.

The resulting List will contain different types depending on the format of

the template string. In the below example, there is only one Node

expression in the template, and so the result will be a list of Nodes:

each (/''/ in usa) {

print(this);

}

However, if a template contains multiple expressions, for instance an edge

and a pair of nodes, we must specify which to include in the resulting List.

The wildcard token * is used to omit an Edge or a Node. In this case, the

results will also be a List of Nodes:

each (/atl -*- ''/ in usa) {

print(this)

print("Is near Atlanta!")

}

"6

If we wish to obtain multiple items from a matched template, they must

be given keys so that the resulting List contains Dictionaries with the

results mapped to their identifier keys.

each (/'a' -*- atl -*- 'b'/ in usa) {

print(this.a)

print(this.b)

print("Passes through Atlanta")

}

3.6. Precedence and Order of Operations

Parentheses have the highest priority in the evaluation of expressions. Logical and

relational operators have lower precedence than the arithmetic operators, so

statements including that include logical or relational operators alongside

arithmetic operations will evaluate the arithmetic statement first and then apply

relational and logical operators to them in that order. For instance this statement

evaluates to True:

Bool yes = 3 > 5 - 2 and 2 + 2 <= 4

4. Programming Structure

Grape programs are described as a single source file which contains a series of global

statements or function declarations which are evaluated from top to bottom.

4.1. Blocks and Statements

Grape is an imperative programming language and is designed to be written in

blocks, a series of statements which are executed top to bottom. Statements

"7

within a block are delimited by semicolons, and can span an arbitrary number of

lines.

4.2. Comments

Single-line comments are designated by a double forward slash, and are

terminated by a new line. Multi-line comments are designated by three forward

slashes, and are terminated by another three forward slashes.

Int a = 5; // Look 'ma a comment!

///

Welcome to the COMMENT ZONE!

///

4.3. Functions

Functions act as a way to compartmentalize segments of your program. Functions

are defined by a return type, an ID, and zero or more comma-delimited

parameters enclosed in parentheses. The function body consists of a series of

statements that must contain a return statement specifying the value to be

returned. A function declaration is designated as follows:

fun return-type function-name(param, param) {body}

Here is a Grape implementation of Euclid's Algorithm using a recursive functions

fun Int gcd(Int a, Int b) {

Int r = a % b;

if (r == 0) {

return b;

}

"8

return gcd(b, r);

}

Functions can be called anywhere in the program body or in any function body,

including its own. Grape supports recursion. A function call is designated by the

function ID and a series of parameters enclosed in parentheses:

Int a = gcd(10, 15);

5. Control Flow

5.1. Conditionals

Grape supports if statements that may contain an optional else condition to

execute if the given condition is false.

if (r == 0) { return 3; }

else { return 2; }

5.2. Loops

while loops are designated by a looping condition and a block to be executed as

long as the condition is truthful. They are designated as follows:

while (x < 5) {

x = x + 1;

}

each loops allow the user to iterate over Lists. Within the body of an each loop,

there is special local variable called this which stores the current item in the List.

"9

List a = [3,1,4,1,5,9,2,6];

each (a) {

this = this + 1;

}

6. Standard Library

The Grape standard library provides useful built-in methods for manipulating the List,

Dict, and Graph types, as well as for standard I/O:

print(a) - writes a to stdout.

6.1. List Methods

l.append(x) - append x to the end of the List and return the modified List.

l.clear() - remove all items from the List and return the modified List

l.copy() - return a deep copy of the List

l.insert(i,x) - insert variable x at index i and return the modified List

l.pop() - remove and return the last element from the List

l.remove(x) - remove the first instance of x and return the modified List

l.reverse() - reverse the entire list, and return the reversed List

l.size() - return the number of elements in the List

6.2. Dict Methods

d.size() - return the number of keys in the Dict

d.key(x) - return the key of the value x, if it exists in the Dict.

d.remove(x) - remove the key x and its value from the Dict

6.3. Graph Methods

"10

g.size() - return the number of Nodes in the Graph

g.root() - return source Node of the Graph

g.leaves() - return a list of Nodes with only one incoming Edge

g.neighbors(x) - return a List of Nodes adjacent to Node x

g.find(x) - return the list of all Nodes that contain the value x

g.empty() - return True of the Graph is empty, otherwise return False

g.switch(x,y) - switch Nodes x and y in a Graph

"11

