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About 
 

Graphs are prevalent in many different places across the internet. For example, every social 

media platform has graphs representing friends (e.g. Facebook) or followers (e.g. Twitter). The 

goal of this language is to allow the programmer to create a language that provides a much easier 

way to create and manipulate graphs with any data type stored inside the nodes, including 

custom structs, compared to conventional programming languages. With easy to use syntax, 

Dijkstra’s algorithm, Kruskal’s algorithm, and other commonly used graph algorithms can be 

easily implemented. Any program that relies on a graph data structure to hold and manipulate 

data and involves complex graph traversal and manipulation will be ideal for this language. The 

language is named GaE — Graphs Ain’t Easy — in the spirit of the difficulty of writing 

programs that use graphs, but the language aims to make the experience much easier. 

  



Lexical Conventions 
 

Tokens 
There are 5 classes of tokens: identifiers, keywords, operators, literals, and separators. Blanks, 
horizontal and vertical tabs, newlines, and comments (described below) are ignored when used 
on their own, though white space is required to separate adjacent keywords and identifiers. 
 

Comments 
The characters /* introduce a comment which terminates with the characters */. These comments 
can span multiple lines, but do not nest, and do not occur within string or character literals. 
 

Identifiers 
An identifier consists of a sequence of characters that can be a letter, underscore, or digit. The 
first character of a variable identifier must be a lowercase letter (e.g. foo), while the first 
character of a custom struct identifier must be an uppercase letter (e.g. Integer). Identifiers are 
case sensitive. 
 

Keywords 
The following identifiers are reserved for use as keywords and can not be used otherwise: 

return if else elseif 
for while continue break 
in int double char 
bool string struct map   
graph func true false
 

Literals 
String Literals 
A sequence of characters inside of double quotes. 

e.g.​ “string” 
 

Character Literals 
A single character inside of single quotes. 

e.g.​ ‘a’ 
 



Boolean Literals 
A boolean literal is either ​true​ or ​false​. 
 
Integer Literals 
A sequence of one or more digits representing an unnamed integer. Cannot start with 0. 

e.g. ​1337 
 

Double Literals 
A double literal consists of an integer part, a decimal point, a fraction part, an ​e​ or an ​E​, and an 
optionally signed integer component. 

e.g. ​5.4e-15 
 

Struct Literals 
A struct literal consists of a field and value pair specified by a field name, a colon, and a value. It 
can contain any number of field and value pairs, and the whole thing is encapsulated by curly 
brackets. All values must be of the same type, and all fields must be unique. You cannot have an 
empty struct literal. 

e.g.​ {value: 5} 
 

Array Literals 
An array literal is a sequence of values (of the same type), separated by commas and 
encapsulated by square brackets. 

e.g. ​[1, 2, 3, 4, 5] 
 

Map Literals 
A map literal is a key and value pair separated by a colon, and encapsulated by square brackets. 
All keys must be the same type, and all values must be the same type, though the key type does 
not have to be the same as the value type. A key type must be integer, character, or a string. All 
keys must be unique. 

e.g. ​[“foo”:5, “bar”: 8] 
 

Graph Literals 
A graph literal is encapsulated by curly brackets and consists of three-tuples that specify the 
source node, destination node, and edge (in that order) with struct literals. These three-tuples are 
encapsulated in parentheses and separated by commas. Semantically, each three-tuple defines 
both the source and destination nodes (if they haven’t been already) and a directed edge between 
them. All nodes must have the same struct type (i.e. they must have the exact same fields), and 
all edges must have the same struct type, though nodes and edges don’t need to have the same 



struct type. Each three-tuple must have a unique source-destination combination such that no two 
three-tuples have the same source and destination. You cannot have an empty graph literal. 

e.g. ​{ 
       ({value: 1}, {value: 2}, {value: 3}), 

       ({value: 2}, {value: 3}, {value: 1}) 

   } 

 

Separators 
The following characters are considered separators, i.e. characters that separate tokens  

( ) [ ] { } ; , : 

Semicolons are used exclusively for terminating expressions. Use of the other separators will be 
defined in the following sections. 
 
 

  



Data Types 
 

Primitive Data types 
Integer 
An integer is a number of the set ℤ = {​-2147483648,​..., -2, -1, 0, 1, 2, …,​2147483647​}. Integers 
are 32-bit signed integers that can be specified in decimal (base 10). The negation operator can 
be used to denote a negative integer. The type is denoted with​ ​int. 

e.g. ​int i := 101; 
 
Double 
A double is a 32-bit floating-point number that can be specified using the following syntax. The 
type is denoted with​ ​double​. 

e.g. ​double i := 2.4; 
 
Boolean 
A boolean expresses a truth value. It can be either true or false. To specify a boolean literal, use 
the constants true or false. Both literals are case-sensitive.  

e.g.​ ​bool lies := true; 
 
Char 
A ​char​ is an ASCII character that can be any letter, number, punctuation marks, symbols or 
whitespace. A variable can be declared as a character type and characters can be stored in the 
variable. 

e.g. ​char eye := ‘i’; 
 
String 
A string is an array of characters ​terminated with a special character ‘\0’. A string literal can only 
be specified using double quotes. 

e.g. ​string greeting := “Hello World”; 
 
 

Container Data Types 
Structs 
A struct is a user-defined data type that, unlike arrays, allows for the combination of data items 
of different kinds. A struct definition is as follows 



e.g.​ struct Int { 
value: int 

   }; 

This defines a custom struct type that we can use to define variables. For example, given the 
above struct definition, we can have: 

e.g. ​Int foo := {value : 5}; 
 
Array 
An array is a container of one or more values of the same type. Each value is called an element 
of the array. The elements of the array share the same variable name. Each element has its own 
unique index number. An array can be of any type. 

e.g. ​string[] weekdays := [“Saturday”, “Sunday”]; 
   double[] average := [85.6, 91.7]; 

 

 
Map 
A map is a container of key-value pairings, where a value can be accessed given a key but not 
vice-versa. The type of the key and value are defined by the type definition on the left-hand side.  

e.g. ​map<string, double> gpas := [“andrew”: 4.0, “kevin”: 4.0, 
“samara”: 4.0, “jason”: 4.0]; 
 
Graph 
A graph is a collection of nodes and edges. The node type or edge type must be defined on the 
left-hand side of the declaration.  

e.g. ​graph<int, int> some_graph := {(1,2,3), (2,1,5)}; 
 

 

 

  



Operators 
 

Boolean Operators 
|| 
This is the logical OR operator. The || operator guarantees left-to-right evaluation: the first 
operand is evaluated; if it is unequal to false, the value of the expression is true. Otherwise, the 
right operand is evaluated, and if it is unequal to false, the expression’s value is true, otherwise 
false. The operands need not have the same type. The result is type ​boolean​. 

e.g.  
true || false /* returns true */ 

false || false /* returns false */ 

false || true /* returns true */ 

 

&& 
This is the logical AND operator. The && operator guarantees left-to-right evaluation: the first 
operand is evaluated; if it is equal to false, the value of the expression is false. Otherwise, the 
right operand is evaluated, and if it is equal to false, the expression’s value is false, otherwise 
true. The operands need not have the same type. The result is type ​boolean​. 

e.g. 
false && true /* returns false */ 

true && false /* returns false */ 

true && true /* returns true */ 

 
! 
This is the logical NOT operator. The ! operand of the operator must have an boolean type. The 
operator negates the boolean value of the operand. The result is type ​boolean​. 

e.g. 
!true /* returns false */ 

!false /* returns true */ 

 

Numeric Operators 
<, >, <=, >= 
These are the RELATIONAL operators. These operators evaluate from left-to-right: if the 
relation is true, the operator returns true; and if the relation is false, the operator returns false. 
The result is type ​boolean​. These operators compare numeric values, not pointers. 

e.g. ​1 > 2 /* returns false */ 



 
==, != 
These are the EQUALITY operators. These operators are analogous to the relational operators, 
except they have lower precedence. Thus, a<b == c<d would be evaluated: (a<b) == (c<d) where 
the operands on either side of the equality operators are evaluated first. 

e.g. ​1 == 1 /* returns true */ 
e.g. ​2 > 3 == 3 < 5 /* returns false */ 

 

Integer Operators 
+, -, *, /, %, ++, --  
These are the INTEGER operators. The ​+​​ operator denotes addition, the​ -​​ operator denotes 
subtraction, the ​*​​ operator denotes multiplication, the ​/ ​​operator denotes division, the ​%​​ operator 
yields the remainder, the ​++​​ operator increments, and the ​--​​ operator decrements. The result is 
type ​int​. All of these operators may be used ​only​ in ​integer​​ arithmetic; if used incorrectly, the 
compiler will throw a “type mismatch” error.  

e.g. 
5 + 6 /* returns 11 */ 

5.0 + 6 /* error */ 

 

Double Operators 
+., -., *., /., %.  
These are the DOUBLE operators. The ​+.​​ operator denotes addition, the ​-.​​ operator denotes 
subtraction, the ​*.​​ operator denotes multiplication, the ​/.​​ operator denotes division, and the ​%. 
operator yields the remainder. The result is type ​double​. All of these operators may be used 
only​ in ​double​​ arithmetic; if used incorrectly, the compiler will throw a “type mismatch” error. 

e.g. 
5.0 +. 6.0 /* returns 11.0 */ 

5.0 +. 6 /* error */ 

 

Assignment Operators 
:= 
This is the INITIALIZATION operator. The := operator evaluates from right-to-left and the 
value of the expression becomes the object referred to by the left operand. Both operands must 
have the same type. The type of the left operand precedes the variable name, and the type of the 
right operand is inferred based on the syntax. 

e.g. ​int i := 1; 
 



= 
This is the REASSIGNMENT operator. The = operator evaluates from right-to-left and the value 
of the expression replaces the object referred to by the left operand. Both operands must have the 
same type. The type of the left operand precedes the variable name, and the type of the right 
operand is inferred based on the syntax. 

e.g. 
int i := 1; 

i = 2; 

 

The ​​in​​ Operator 
The ​in​ operator is evaluated from left to right and takes two arguments in the form 

arg1 in arg2 
and returns a boolean value for whether ​arg1​ is contained by ​arg2​. Note that use of this 
operator is valid only when ​arg2​ is an array, map or graph. Here is how the operator’s behavior 
is defined in each case: 
 
Array 
When ​arg2​ is an array, ​arg1 in arg2​ returns true if and only if ​arg1​ is an element of 
arg2​. 

e.g.  ​5 in [1,2,3,4,5] /* returns true */ 
 
Map 
When ​arg2​ is a map, ​arg1 in arg2​ returns true if and only if ​arg1​ is a key of ​arg2​. 

e.g.  ​5 in [1:2,3:4,5:6] /* returns true */ 
   6 in [1:2,3:4,5:6] /* returns false */ 

 
Graph 
When ​arg2​ is a graph, ​arg1 in arg2​ returns true if and only if ​arg1​ is a node of ​arg2​. 

e.g.  ​{value: 5} in {({value: 1}, {value:5}, {value: 3})} 
   /* returns true */ 

  



Control flow 
 

If-statements 
If-statements are used to define a block of code whose execution is conditional based on an 
expression that returns a boolean value. They follow the form 
if expr { 

/* some code */ 

} 

They may optionally contain an else-statement, which is executed in the event that expr 
evaluates to false: 
if expr { 

/* some code */ 

} else { 

/* some more code */ 

} 

We may also have an elseif-statement, which must follow an if-statement and is used to define a 
block of code whose execution is conditional based on a given expression and on the premise 
that all previous if or elseif-statements are false. An elseif-statement cannot follow an 
else-statement, if the else-statement exists. 
if expr1 { 

/* some code */ 

} elseif expr2 { 

/* some more code */ 

} elseif expr3 { 

/* even more code */ 

} else { 

/* last bit of code */ 

} 

 

Here is an example piece of code making use of if statements. 
 
int foo := 5; 

if foo > 10 { 

print(“your number is greater than 10”); 

} elseif foo > 7 { 

print(“your number is greater than 7”); 



} else { 

print(“your number is less than or equal to 7”); 

} 

 

Loops 
There are two kinds of loops we support: while-loops and for-loops. While-loops define a block 
of code that is repeatedly executed as long as a given expression continues to evaluate as true. 
While-loops follow the form 
while expr { 

/* some code */ 

} 

 

An example while-loop that prints the numbers 1 to 10 is as follows:  
 

int x := 1; 

while x <= 10 { 

x += 1; 

print(x); 

} 

 

For-loops are similar to while-loops in that they define a block of code that is repeatedly 
executed while a given expression continues to evaluate as true, but there is syntactic support for 
variable instantiation and modification after every execution of the defined block of code. 
For-loops follow the form: 
 
for initialize; test; step { 

/* some code */ 

} 

 

An example for-loop that prints the odd numbers from 1 to 20 is as follows: 
 

for int x := 1; x < 20; x+=2 { 

print(x); 

} 

 

We also support nested loops, where a while or for-loop is embedded within an outer while or 
for-loop. An example of nesting loops to find all prime numbers under 100 is as follows: 
 



for int x := 2; x < 100; x++ { 

bool is_prime := true; 

for int y := 2; y < x; y++ { 

if x % y == 0 { 

is_prime = false; 

} 

if is_prime { 

print(x); 

} 

} 

 

In loops, we can make use of the ​continue​ and ​break​ keywords. When a ​continue​ is 
reached within a block of code inside a for or while-loop, execution of the current loop halts and 
execution of the next loop begins. For example, a ​continue​ statement is used in this loop such 
that all numbers from 1 to 10 are printed except for 5: 
 
for int x := 1; x <= 10; x++ { 

if x == 5 { 

continue; 

} 

print(x); 

} 

 

When a​ ​break​ ​is reached, the entire loop is terminated. For example, a​ ​break​ ​statement is 
used in this loop such that only numbers 1 to 5 are printed, even though the loop would have 
otherwise printed 1 to 10. 
 
for int x := 1; x <= 10; x++ { 

if x == 6 { 

break; 

} 

print(x); 

} 

  



Functions 

 
A function declaration has the form: 

func func_name(parameter-list) return-type  

The parameter list specifies the types of the parameters, which are separated by commas. A 
function is then followed by curly brackets. Inside the curly brackets is the code for the function, 
which must include a return statement denoted by the ​return​ keyword, returning the correct 
type as specified in the function declaration. All functions must specify a return type. All 
programs must have a main function (​func main() int​)  which must follow this format. 
The code within this function will be executed when the program is run. 

e.g. ​func add(int i, int j) int { return i+j; } 
 

  



Standard Library 
 

Array built-in functions 
len(array)  
Returns the length (type int) of a given array. 

e.g. ​len([1,2,3,4]); /* returns int of value 4 */ 
 
 
array[i]  

Returns the ith element in the array (starts at index 0). If there is no ith element, throw an error. 
e.g. ​int[] arr := [1,2,3,4]; 
   arr[1]; /* returns int of value 2 */ 

 

Map built-in functions 
len(map) 

Returns the total number of key-value pairs in the map. 
e.g. ​len([1:2,3:4,5:6]); /* returns int of value 3 */ 

 
map[k] 

Returns the value mapped to given key k. If key k doesn’t exist in map, throw an error. 
e.g. ​map<int, int> mymap := [1:2,3:4,5:6]; 

    mymap[3]; /* returns int of value 4 */  

 

Graph built-in functions 
addNode(g, value) 

Adds a node to the graph with the specified value. If a node with the same value exists, return 
false. Otherwise return true. 
 
nodes(g) 

Returns an array of the values of the nodes. 
 
addEdge(g, src, dest, edge) 

Adds edge to a graph with specified source, destination, and edge value. If an edge with the same 
source and destination exists, return false, else return true. Note that type of ​src​ and ​dest​ must 



be the same as type of node specified by the graph. The type of ​edge​ must also be the same type 
of edge specified by the graph. 
 
edges(g) 

Returns an array of the values of the edges. 
 
getEdges(g, node) 

Returns edges starting from node (described by its value). 
  

Other built-in functions 
print(value) 
Prints the contents of ​value​ to standard output. 
 

string_of_struct(struct) 

Returns a string-formatted version of the struct. 
 

string_of_array(array) 

Returns a string-formatted version of the array. 
 

string_of_map(map) 

Returns a string-formatted version of the map. 
 

string_of_graph(graph) 

Returns a string-formatted version of the graph. 
 
string_of_int(int) 

Returns a string-formatted version of the int. 
 
string_of_double(double) 

Returns a string-formatted version of the double. 
 
int_of_double(double) 

Returns the value of a double as an int. The digits that follow the decimal point are truncated. 
e.g.​ int_of_double(5.3) /* returns 5 */ 

 
double_of_int(int) 

Returns the value of an int as a double.  
e.g.​ double_of_int(5) /* returns 5.0 */ 


