

Fli-o: File Manipulation Language
Language Reference Manual

Matthew Chan (mac2474)
Justin Gross (jg3544)

Gideon Cheruiyot (gkc2112)
Eyob Tefera (et2546)

1

I Introduction 4

2 Lexical Conventions 4
2.1 Tokens 4
2.2 Comments 4
2.3 Identifiers 4
2.4 Keywords 5
2.5 Literals 5

2.5.1 Int Literals 5
2.5.2 String Literals 5

2.6 Separators 5

3 Types 5
3.1 Primitive Types 5
3.2 Derived Types 5

4 Expressions 6
4.1 Parenthetical Expression 7
4.2 Function Call 7
4.3 Array Access 7
4.4 Property Access 7
4.5 Logical Not 7
4.6 Multiplicative/Division Operators 8
4.7 Additive/Subtraction Operators 8
4.8 Relational Operators 8
4.9 Logical And 8
4.10 Logical Or 9

5 Statements 9
5.1 Expression Statement 9
5.2 Variable Declaration Statement 9
5.3 Return Statements 9
5.4 Block Statement 10
5.5 Control Flow Statements 10
5.5 Loops 10
5.6 Piping Statement 11
5.7 Assignment Statement 11

6 Functions 11
6.1 Function Declaration 11
6.2 Function Structure 12

2

7 Built-in Functions 12

8 Scope 13

9 Utility Processing 13

10 Grammar 14

3

I Introduction
Fli-O was developed to create a seamless way to for users to interact with files, especially large

documents that require file or directory manipulation. To avoid the confusion around buffers and
input/output, we plan to allow users to open documents and then handle the closing and handling of the
file ourselves. This should greatly increase the ease of interacting with files as a user just had to open
them before proceeding to work with the file, no longer does the user of our language have to do any file
memory management aside for indicating which file they want to work with in the first place. In short, we
want to simplify the process of working with file I/O and change it from a pain point to a hallmark of the
language.

Furthermore we want to give users the ability to process these files and do additional file
management operations on these files while keeping the I/O process as simple as possible. Some
processing that users would be able to do include directory deletion, file manipulation, search and replace,
merging multiple files, splitting files, and easily appending to files. We also plan to include several file
management functions that users can build from in order to create custom file management processes that
simplify a user’s workflow. Our language will be written in OCaml and then compiled into LLVM code.

2 Lexical Conventions

2.1 Tokens
There are five classes of tokens: identifiers, keywords, literals, operators, and other separators.
Blanks, horizontal and vertical tabs, newlines, and comments as described below (i.e. white
space) are ignored except as they separate tokens. Some white space is required to separate
otherwise adjacent identifiers, keywords, and constants. If the input stream has been separated
into tokens up to a given character, the next token is the longest string of characters that could
constitute a token. (Liberally borrowing from K&R)

2.2 Comments
Comments are signified by two forward slash characters ‘//’ after which the comment is
terminated by the new line.

2.3 Identifiers
Identifiers are a sequence of digits, letters, and the underscore, where the first element in the
sequence must be a letter (upper or lower case). The explicit range of available ASCII
characters that define a ‘letter’, ‘digit’, and the ‘underscore’ are:

4

‘0’-’9’ {digit}
‘a’-’z’|’A’-’Z’ {letter}
‘_’ {underscore}

2.4 Keywords
The following case-sensitive identifiers are reserved for use as keywords in Fli-o and may not be
used otherwise:

int string file dir if elif for foreach in
and or not def return

2.5 Literals

2.5.1 Int Literals
An integer constant consisting of a sequence of digits that is expressed strictly in decimal
notation and 64 bit in size with the initial bit indicating sign.

2.5.2 String Literals
A string literal, also called a string constant, is a sequence of characters surrounded by single
quotes as in ‘...’

2.6 Separators
There are three sets of types of separators, {}, () and [], which are used to denote separation
between other tokens and group them in specific ways.

3 Types
3.1 Primitive Types
int: 63 bit signed integer. The first bit represents the sign, the others represent the value.

int i=3;

3.2 Derived Types
string: String literal. A sequence of ASCII characters surrounded by single quotes. Immutable,
any attempts to reassign a string variable’s value result in the creation of a new string.

string s=’hello’;

5

file: A file handle for file manipulation as well as reading and writing. Contains metadata about
the filepath (string), size of file in bytes (int), and a list of permissions (array). Initialized using the
fopen function.

file f;

f = fopen(“c\mydoc\dict.txt”);

dir: A type that exemplifies a file directory. It contains metadata with the filepath of the directory
itself (string), a list of permissions (array), two indexed lists (arrays) that contain strings of file
paths: one for its subdirectories and the other for the files within the directory. They are sorted
in lexicographical order.

dir d;

d = dopen(“c\mydoc\”);

Arrays: type id assignment

 Arrays are 0-indexed mutable lists of same-typed values. They are instantiated and
semantically indicated by a type followed by an identifier and then two braces encasing an
integer that initializes the array size. Individual elements from the array can later be accessed
by specifying its index into the array enclosed by square brackets at the end of the name of the
identifier. Arrays may be list of more arrays, allowing for unbounded multidimensional arrays.
Arrays have an a property of size that indicates total members of the array (array).

string[5] arr;

arr = [‘hello’,’my’,’name’,’is’,’Eyob’];

4 Expressions
Expressions are sequences of one or more tokens that have a value. Identifiers and literals are
also expressions by this definition. The precedence of these expressions beyond the base
literals and identifiers is listed in order below from highest to least except where explicitly noted.
Operators described in the same section are closely related and share the same precedence

4.1 Parenthetical Expression
(expression)

6

A simple expression that takes the value of the interior of the parentheses. Used to express the
highest precedence amongst expressions.

4.2 Function Call
identifier(arguments)

A function call is consists of an identifier, which is the name of the function, followed by a
sequence of zero or more arguments enclosed by parentheses. Function calls pass their
arguments by value. The value of the function call itself is of the return type specified in the
function declaration with the value of the expression within the return statement. Function calls
are left to right associative.

4.3 Array Access
identifier[expression]

Array access is an expression that accesses a member of the array. The expression must be of
an integer type (which is the desired index), while the identifier must be of one of the derived
array types. The value of the array access expression is the value at the specified index. Array
access is left to right associative.

4.4 Property Access
expression.identifier

The dot operator allows for access of a property of a type. The identifier is the name of the
property, which must be specified in the type definition. The expression must ultimately be an
identifier of the type that corresponds to the identifier for the property. The value of this
expression is the value of the property for that explicit identifier. Property access is left to right
associative.

4.5 Logical Not
NOT expression

The not operator expresses logical negation using the keyword not . The expression must of
integer type. If the value is not 0, the resulting value from the expression is 0, and if the value is
0, the resulting value is 1. The operator is right to left associative.

4.6 Multiplicative/Division Operators
expression * expression

expression / expression

7

These are the two basic multiplicative operators. The two expressions on both sides must be of
the integer type. The times operator * denotes multiplication and the evaluation of the
expression is the integer that results from multiplying the two. Similarly the divide operator /
denotes division and the evaluation of the expression gives the resulting value of the truncated
integer quotient. If the second operand in the division operation is 0, the result is undefined.
The operators are left to right associative.

4.7 Additive/Subtraction Operators
expression + expression

expression - expression

These are the two basic additive operators. The two expressions on both sides must be of the
integer type. The plus operator + denotes addition and the evaluation of the expression is the
integer that sum of adding the two. Similarly the minus operator - denotes subtraction and the
evaluation of the expression results in the integer difference. The operators are left to right
associative.

4.8 Relational Operators
expression < expression

expression > expression

expression == expression

expression != expression

These are the two basic relational operators greater than >, less than <, equals to ==, and not
equals !=. The two expressions on both sides must be of the integer type. If the specified
relation is true, the resulting value is an integer, 1, and 0, if false. The operators are left to right
associative.

4.9 Logical And
expression AND expression

The and operator expresses logical and using the keyword and . The expressions must be
integers. If the values of both expressions are not equal to zero, the resulting value from the
expression is 1, and if the one of the values is zero, the resulting value is 0. The operation is
left to right associative and if the left hand side is evaluated to 0, it does not evaluate the right
hand side already knowing the result is 0.

8

4.10 Logical Or
expression OR expression

The or operator expresses logical or using the keyword or . The expressions must be integers.
If the values of one of the expressions are not equal to zero, the resulting value from the
expression is 1, and only if both of the values are zero, is the resulting value 0. The operation is
left to right associative and if the left hand side is evaluated to 1, it does not evaluate the right
hand side already knowing the result is 1.

5 Statements
These statements are executed in sequence and contain no inherent value. The
SEQUENCING token refers to using the semi-colon to terminate some statements. They are
described below with some minor categorization due to similarity.

5.1 Expression Statement
expression;

The basic statement of an expression that is terminated. Frequently function calls.

5.2 Variable Declaration Statement
type identifier;

type identifier=expression;

type identifier=[arguments];

These statements indicate the declaration of variables. The first form indicates declaration
without initializing where the

5.3 Return Statements
return expression;

return ;

These statements return to the call of the function. The expression must match the return type
specified in the function declaration statement. If there is a type, it must be same, and if there
type, any return statements must be of the second form above. The value of the expression is
returned to function call expression and is the function call expression’s value.

9

5.4 Block Statement
{statement_list}

This statement indicates grouping and limiting of scope. It is a series of 1 or more statements
enclosed by {}. Any identifiers declared within a statement like this can not be used in
statements outside of the block statement.

5.5 Control Flow Statements
if (expression) statement

if (expression) statement else statement

if (expression) statement elif_list

if (expression) statement elif_list else statement

elif (expression) statement

The control flow statements listed above allow for different statements to be optionally executed.
If the first expression, which must be an integer, evaluates to not 0, the first statement executes
in all forms. The other forms indicate differently other statements to take and what conditions
must be true to take them. elif_list indicates a series of 1 or more elif statements, which
provide secondary conditional expressions (i.e. else if) that are checked if the the preceding if
and elif statements evaluate to 0. If those expressions are again non-0, the following statement
is executed and the rest are not considered. If none of the preceding if or elif (if there are any)
expressions are evaluated to be non-0, then if there is an else, the following final statement is
executed.

5.5 Loops
for (expressionOpt; expressionOpt; expressionOpt) statement

foreach expression in expression statement

These are two forms of iterative statements:

(largely from K&R):
In the for statement, the first expression is evaluated once, and thus specifies initialization for
the loop. There is no restriction on its type. The second expression must be integer type, it is
evaluated before each iteration, and if it becomes equal to 0, the for is terminated. The third
expression is evaluated after each iteration, and thus specifies a reinitialization for the loop.
There is no restriction on its type. Side-effects from each expression are completed immediately
after its evaluation. Any of the three expressions may be dropped. A missing second expression
makes the implied test equivalent to non-0 and thus always true.

10

In the foreach statement, the first expression is an identifier that functions as a member of an
array and the second expression is the identifier that indicates the desired array. Thus, the
statement is executed for each element in the array. The element in the array that is currently
being iterated over can be accessed within the loop by using the first identifier.

5.6 Piping Statement
expression PIPE expression

The piping operator, ‘|>’ allows Fli-o to utilize outside utilities and programs in subprocesses. It
pipes the output of the utility on the left to the input of the utility on the right. Each of the
expressions must be of the string type and correspond to a utility listed in the imports at the
beginning the program with the import statement. The program will be checked at runtime to
ensure that the utilities listed in the import statement exist The string for each indicates the
execution of that program and contains the program path of the desire utility.

5.7 Assignment Statement
identifier=expression;

identifier=[array_literals];

identifier=[expression];

These are three different ways to assign values to identifiers. The first form is used for all
non-array types. The expression must correspond to the type of the identifier. Strings are literal
values, so each time they are changed, new string is created. Files and dicts are references to
larger structured types and so merely assign the identifier the old reference value. In particular,
files and directories must be opened by fopen and dopen, respectively, though the structure
referred to by a specific identifier may freely change. The next two forms indicate two different
ways to assign values to an array. The first form simply replaces whatever values had
previously been in the array with the new series of identifiers/literals within the brackets. The
third form is used to change the size of the array, where the expression is an integer and can
only increase the array size.

6 Functions

6.1 Function Declaration
def identifier (params) type_opt {statement_list}

A function can be declared anywhere within a function (besides within another function or
statement block). It is indicated that this is a function and the first declaration of such by the def
(define) keyword. It is then followed by the identifier that names the function and then a series

11

of comma-delimited parameters (0 or more) that are enclosed by parentheses. Each parameter
consists of a type and a local identifier to be used in the function. After the parameters, there
may be a type. This type is the return type of the function. Finally, there are braces that
surround the series of statements that make up the function itself.

6.2 Function Structure
Each function is passed its arguments by value (though the value of directories and files are
references). The arguments included in the function call must match the types and order of the
parameters listed in the function declaration. The return type of the function indicates if there
need be return statements; a return type requires that a return statement with an expression of
the correct type end all possible functions. Alternatively, lack of a return type means that there
need not be a return statement in the function, though any return types must be of the second
form listed in 5.3.

7 Built-in Functions

fopen(string filePath) file{}

● Takes a string of the filepath, creates the file object and

returns the file.

dopen(string filePath) dir{}

● Takes a string of the filepath, creates the dir object and

returns the dir.

copy(file target, string dest) file{}

● Takes a string of the filepath, creates the file object and

returns the file, or it returns an empty newly created file if

the target is invalid

move(file target, string dest) string{}

● Takes a string of the filepath, moves the file object and

returns the files new location, if it fails it returns the

current location

delete(file target) int{}

● Returns 0 or 1 depending upon if it successfully deletes

anything

rmdir(dir target) int{}

● Remove a directory

● Returns 0 or 1 depending upon if it successfully deletes

anything

12

concat(string s1, string s2) string{}

● Doesn’t modify s1 or s2, just returns the concatenated string

read(file target, int num_chars) string{}

● Returns a string with the next num_chars of characters from the

file

readLine(file target) string{}

● Returns a string up to the first \n character encountered from

the file

write(file target, string contents) file{}

● Overwrites the target file with the contents of string

● If the target file does not exist, create the file

appendString(file target, string contents) int {}

● Appends a string to the end of the target file, returns 1 if

successful, 0 if unsuccessful

appendFile(file target, file other) int{}

● Appends the contents of other file to the target file

print(anytype) string{}

● For int prints the integer value

● For string prints the string contents

● For file prints the file name

● For dir prints the dir name

8 Scope
Local scope is defined to be any series of statements enclosed by {}, whether it be in a function
or a general block statement. Any string and integer type variables are limited to their local
scope, if it exists, and may not be referred to outside of their scope. In particular, files and
directory types are not closed even if the identifiers are local to the scope of a function and
persist until the program quits, wherein these types are closed. Strings and ints do not persist
outside of their scope. In general, scoping is otherwise very similar to that of C.

9 Utility Processing
import expression;

At the beginning of each program, there will be a series of import statements that relate to
outside programs that can be run by this Fli-o program. They are checked at runtime to ensure

13

that the utility does exist at the indicated path. The expression must be a string type that is the
filepath of the desired utility.

10 Grammar
program:

Declaration EOF

Declaration:

// empty declaration are valid
Declaration Import
Declaration Function-Declaration
Declaration Statement

Import:

IMPORT StringLiteral

Function-Declaration:

Def ID (params) type_opt {statement_list}

Params:

// empty params is valid
paramlist

Paramlist:

type ID
paramlist,type ID

Variable-Declaration-Statement:

type ID Sequencing(;)
type ID Assignment expression Sequencing(;)
type ID Assignment ArrayLiteral Sequencing(;)

ArrayLiteral:

[arguments]

Arguments:

// empty arguments are allowed
arglist

Arglist:

expression

14

arglist, expression

StatementList:

// empty statement list are allowed
statementList statement

StatementOpt:

SEQUENCING(;)
Statement

Statement:

Expression Sequencing
Variable-Declaration-Statement
ID Assignment Expression Sequencing(;)
ID Assignment ArrayLiteral Sequencing(;)
ID Expression Assignment expression Sequencing(;)
Return expression sequencing
Return Sequencing
{StatementList}
FOR (expressionOpt Sequencing expressionOpt Sequencing expressionOpt) Statement
FOREACH expression IN expression statement
IF (expression) statement
IF (expression) statement ELSE statement
IF (expression) statement elifList
IF (expression) statement elifList ELSE statement

ElifList:
elif
elif-list elif

Elif:

ELIF (expression) statement

ExpressionOpt:

// empty expression_opt is valid
expression

Expression:

expression PLUS expression
expression MINUS expression
expression TIMES expression
expression DIVIDE expression
expression PIPE expression
expression LESSTHAN expression

15

expression GREATERTHAN expression
expression EQUAL expression
expression NOTEQUAL expression
expression AND expression
expression OR expression
NOT expression
expression DOT ID
INTLIT
STRINGLIT
ID
ID [ARGUMENT]
ID [EXPRESSION]

typeOpt:

// empty typeOpt is valid
type

Type:

int
String
File
Dir
type [IntLiteral]

16

