
COMS W4115
Programming Languages and Translators

Homework Assignment 1

Prof. Stephen A. Edwards Due October 1st, 2018
Columbia University at 4:00 PM

Submit your assignment as a single PDF file on Courseworks.
Include a demonstration of your code working on examples, e.g.,
by including a screenshot of your code compiling and working.

Do this assignment alone. You may consult the instructor or a
TA, but not other students. All the problems ask you to use OCaml.
You may download the compiler from ocaml.org.

1. Write an OCaml function maxrun that reports the length of
the longest contiguous run of equal values in a list. E.g.,

val maxrun : ’a list −> int = <fun>
maxrun [];;
− : int = 0
maxrun [1];;
− : int = 1
maxrun [1;1];;
− : int = 2
maxrun [1;1;2;2;2;1;3;3];;
− : int = 3

2. Write a word frequency counter. Start from the following
ocamllex program (wordcount.mll) that gathers in a list of
strings all the words in a file, then prints them.

{ type token = EOF | Word of string }

rule token = parse
| eof { EOF }
| [’ a’−’z’ ’A’−’Z’]+ as word { Word(word) }
| _ { token lexbuf }

{
let lexbuf = Lexing.from_channel stdin in
let wordlist =

let rec next l =
match token lexbuf with

EOF −> l
| Word(s) −> next (s :: l)

in next []
in
List . iter print_endline wordlist

}

Replace the List.iter call with code that scans through the list
and builds a string map whose keys are words and whose val-
ues count the number of apearances of each word. Then, use
StringMap.fold to convert this to a list of (count, word) tuples;
sort them using List.sort; and print them with List.iter. Sort
the list of (count, word) pairs using

let wordcounts =
List .sort (fun (c1, _) (c2, _) −>

Pervasives.compare c2 c1)
wordcounts in

Compiling and running my (20-more-line) solution:

$ ocamllex wordcount.mll
4 states, 315 transitions, table size 1284 bytes

$ ocamlc -o wordcount wordcount.ml

$./wordcount < wordcount.mll

9 word
7 map
7 let
7 StringMap
6 in
...

3. Extend the three-slide “calculator” example shown in the
OCaml slides (the source is also available on the class web-
site) to accept variables named with identifiers consisting
of lowercase letters, assignment to those variables, and se-
quencing using the “;” operator. For example,

foo = 3; bar = baz = 6; foo * bar + baz

should print “24”

Use a string-to-integer Map to track variable variables. Add
tokens to the parser and scanner for representing assign-
ment, sequencing, and variable names.

The ocamllex rule for the variable names, which converts the
letters a–z into the corresponding literals, is

| [’ a’−’z’]+ as id { VARIABLE(id) }

The new ast.mli file is

type operator = Add | Sub | Mul | Div
type expr =

Binop of expr * operator * expr
| Lit of int
| Seq of expr * expr
| Asn of string * expr
| Var of string

Make sure your code compiles without warnings

