
shux
A physics simulation language

for Lagrangian physics



Our Team
●Lucas Schuermann: Manager, physics dude

●John Hui: Language guru

● Mert Ussakli: Code slave

● Andy Xu: System architect



Inspiration
Growing field of 
particle-based 
numerical physics 
solvers  
●Fluid dynamics
●Granular flow
●Deformables



Main features
● Everything good about C, redesigned for easy 

implementation of particle-based Lagrangian physics solvers

● Mostly immutable (unless you cheat) types for concurrency

● Simple functional syntax
● Maps, filters, lambdas
● Namespaces
● Lookback and generators (what are those?!)

● Easy bindings to OpenGL through extern declarations



Immutability
int x = 1;

var int y = 2;

y = 3; /* this is OK */

x = 5; /* this is not OK */

Allows for guaranteed safety in concurrent 
settings!



Map!
kn addOne(int x) int {

x+1

}

kn main() int {

int[5] x = [1,2,3,4,5];

int[5] xPlusOne = x @ addOne;

0

}



Filters
kn lessThanThree(int x) bool {

x < 3

}

kn main() int  {

int[5] array = [2,3,4,5,6];

int[] filtered = array :: lessThanThree

0

}



λs
(low key type inferred)

kn main() int {

int[5] x = [1,2,3,4,5];

bool[5] b = x @ (int i) -> { 

i % 2 == 0 

} 

}



ns constants = { 

ns physical_params = { 

let vector <2> grav= (0.0, -9.81);

}

ns = solver_params = { 

let scalar dt = 0.001;

}

scalar y = constants -> 

physical_params -> grav[1];

}

Namespaces



Everything is an expression
int y = 2
int x = if y == 2  



The lookback feature and 
generators

gn fib() int {

int y = (y..1 : 1) + (y..2 : 1);

y

}

kn main() int {

int fib5 = do 5 fib( );

0

}



Native LLVM OpenGL Binding
extern graphics_init();
extern graphics_loop(scalar[] points_buf);
kn main() int {

graphics_init();
...
graphics_loop(...);
0

}



LLVM<>OpenGL 
Implementation Excerpt



LLVM<>OpenGL
Simple Demonstration



Workflow
●To get all of this working in LLVM, we 

implemented a pipeline with several 
layers of translation. 

●Goal is to convert code with semantics 
most distant from C as close as possible 
to C before generating LLVM IR.



How Crazy Were We?
See next slide...





.shux Scanner Parser

AST

semantSASTCAST

LLAST LLVM
OpenGL



AST



SAST



CAST



LLAST



Case Study: Lookback 
gn bar(int a, int b) int {

int x = a + x..1 
: 3;

int y= b + y ..2 
: 2 ;

x+y
} struct gn_bar = {

int ctr; int[2] a; int[2] b;
int[2] x; int[2] y;

}
kn bar(struct gn_bar gns) int {

gns.x[gns.ctr] = gns.a[gns.ctr] +  
(ctr <= 1) ? gns.x[(gns.ctr-1)%2] : 3;
gns.y[gns.ctr] = gns.b[gns.ctr] +
(ctr <= 2) ?  gns.y[(gns.ctr-2)%2] : 2;
gns.x[gns.ctr] + gns.y[gns.ctr]

}



Testing Environment



Testing Environment
● A large suite of automated unit tests were 

used to thoroughly test every semantic 
aspect of the language

● When changes were made to frontend or 
code was added for lower level translations, 
the suite was run

● Over 150(!) tests allowed us to rigorously 
verify syntax and steps through CAST 
generation.



The Good News: What Works
We have a fully implemented:
● Frontend
● Semantic checker
● AST to SAST translation
● SAST to CAST translation
● CAST to LLAST… (to be continued)
● Translation from LLAST to LLVM



Frontend �
● Fully tested and robust parser
● Handles a number of edge cases 

discovered through tests
● Completed very early on in development to 

ensure testing further down the line



Semantic Checker �
● shux has a strict type checking system, but at the 

same time maps, filters and generators, expressions 
complicate type-checking

● Lambdas have type inference
● The goal for the strict type system was readability and 

ease of translation
● semant.ml is 719 lines of OCaml
● Lookback values are an exception to the rule

● int x = x..1; /* accessed while being defined */ 



AST to SAST �
● Makes all types in all expressions explicit. 

Important for translating an expression-based 
language.

● Does heavy-lifting for further stages of translation
● Lookback values
● Hoisting declarations above expressions in 

functions and lambdas
● Get rid of option types. 
● Separating semantics:

● kernel calls vs generator calls
● float operands and int operands



SAST to CAST �
@John the orator



CAST to LLAST �
@John the orator



LLAST To LLVM �
●All the LLVM binding specific usage is abstracted in 

previous levels of translation
●Hide the registers from levels above
●Only operate on stack variables
●Passing by reference in LLVM

● Array
● String
● Structs

●Using global namespace



The Bad: Or, The Perils of 
Ambition: Real-World Tests�
● Multi-stage pipeline led to many, many, 

many blocking portions of development or 
propagating work from changes

● Time was spent fleshing out an amazing 
sheer volume of code

● We fell a bit sort on demos to show 
because we were more focused on 
designing, implementing, and testing a full 
pipeline



Future Work
● Testing and bugfixes for last two stages of 

the pipeline, relating to:
● More fully compiled complex usages of the 

language to generate results
● Finishing filters
● More robust standard library: further 

graphics calls, gridding, vector operations 
baked in (dot, matmul, etc) 



make_sure_you_start_early.png


