
TuSimple
An Easy Graph Language

Jihao Zhang
Zicheng Xu

Shen Zhu
Ziyi Mu

Yunzi Chai

The Team

Manager
Language Guru
System Architect
Language Guru & Architect
Tester

Overview

Problem
Graphs has important applications in networking, bioinformatics, sof
tware engineering, database and web design, machine learning, and
other technical domains.

It's a pain to draw graphs and calculate graph algorithms by hand.
It's messy, time consuming and usually results in wrong answers.

It’s also hard to programming graphs with programming languages l
ike C/C++, Java, etc.

The TuSimple language is designed to make coding graphs
as simple as drawing graphs on paper.

Overview
The TuSimple language is designed to make representing
and calculating graphs as simple as possible.

Solution
Intuitive syntax to initialize graphs and graph components.

A lot of built-in functions to manipulate complex graphs.

User-friendly built-in containers.

Familiar syntax.

Project status

1922 lines of OCaml code
2486 lines of C code
277 git commits
70 test cases
2083 lines of test code

Architecture

Source

Code(input.tu)

Scanner

Parser
Semantic

Checker

Code

generation

input.ll file

Architecture

./compile.sh <code>

input.ll

Assembler

External Libraries(Set, Hashmap, etc.)

Linker

utils.o

input.s

executable file

A Sneak Peak - Syntax

int main(){
node@{int} node1, node2, node3;
list@{node@{int}} lst; map@{int, node@{int}} mp;
set@{string} s; graph gp;
new s; new node1; new node2; new node3; new node4;
new lst; new gp; new s; new mp;
node1 -> node2 = 2;
node2 -> @{node1, node3, node4} = @{2, 4, 8};
node1.setValue(1);
lst += @{node1, node2};
lst++;
node1 = lst[0];
s += @{”tusimple”, ”is”, “so”, “great”};

}

Declare container types

Initialize containers and graph components

Connect nodes and initialize edge weights.

Overload operators

Language Features
Type

and Containers
int

float
string
graph
bool

node@{type}
list@{type}

map@{type, type}
set@{type}

Operators
+ - * / %
+= -= =

== && || !
>= <=
-> --
++

Comments
// this is a comment

/*
so does this
*/

Built-in Functions
Node
value()
name()
length()
setvalue(value)
iterNode(pos)
weightIter(pos)

List
get(pos)
pop()
length()
remove(pos)
concat(anotherList)
printList()

Set
put(element)
length()
contain(element)
remove(element)

Map
get(key)
put(key, value)
size()
haskey(key)
remove(key)

Graph
bfs(startingNode)
dfs(startingNode)
relax()
expand()
combine(anotherGraph)
iterGraph(pos)
init()
addNode(node)
addEdge(node, node, weight)
printGraph()

Graph depth-first search

node@{int} s, a, b, c, d;
graph g;
list@{int} lst;
new s; new a; new b; new c; new d; new lst;
s -- {a , b , c} = {1, 1, 1};
d -- {a , b, c} = {1, 1, 1};
lst = g.dfs(s);
lst.printList();
// output: s a d b c

S

a b c

d

Graph relaxation
In shortest path algorithms (Bellman-Ford, Dijkstra's),
relaxation is an important operation.

Edge relaxation. To relax an edge v->w means to test whether the best
known way from s to w is to go from s to v, then take the edge from v
to w, and, if so, update our data structures.

Vertex relaxation. Relax all the edges pointing from a given vertex.

g.relax(v)

Java TuSimple

Automated tests
We started from MicroC, then added a test for each
feature we add.

70 test cases, 26 for should-fail, 44 for should-pass

Use shell script to automate the process

Verifies all the test cases are passed before committing

Automated tests

Demo

Breadth-first search (BFS)
Shortest path

Neural network training

Demo
Breadth-first search (BFS) from node 1

1

2

3

4

11

12

15

14 5

1

100

BFS result: node1 node2 node3 node5 node4

Demo
Single source shortest path from node 1

1

2

3

4

1

2

3

3

1

1 0

2 1

3 3

4 1

Demo Neural networks training
XOR function

single hidden layer with three neurons

Input Output

(1, 1) 1

(0, 0) 0

(1, 0) 1

(0, 1) 1

Thank you
Questions?
Special Thanks to Julie, our TA,
who continuously support our project.

