
	
	 	

TABLE	PROGRAMMING	
LANGUAGE	
By	Hamza	Jazmati	

Introduction:	
	
Table Programming Language, or TPL, is based on the C programming language, with the main
difference that TPL supports an extra data type called Table. On the contrary, TPL does not
include all the features supported by C programming language, only a limited subset described in
the rest of this document.

	

Sample	program:		
Note:	The	following	program	does	not	work	in	the	current	version:	
	
In	this	program,	I	developed	an	inner	join	with	the	limited	set	of	features	that	the	language	has	
for	tables.	

	
	

Language	Reference	Manual:	

1.	Lexical	Conventions	
Just	like	C,	which	TPL	is	based	on,	there	are	six	types	of	tokens:		

• Identifiers	
• Keywords	
• Constants	

• Strings	
• Expression	operators	
• Other	separators.	

White	space	including	tabs,	newlines,	blanks,	and	comments	only	purpose	is	to	separate	
tokens.	Otherwise,	they	are	ignored	by	the	compiler.	
	
1.1	Comments:	
Two	types	of	comments	will	be	supported:	

• The characters /* introduce a comment, which terminates with the characters */
This type is borrowed from C.

• The	characters	//	introduce a comment,	which	terminates	at	the	end	of	the	line.	This	is	
borrowed	from	C++.	

	
1.2	Identifiers:	
Identifiers	can	be	described	as	sequence	of	characters	that	start	with	a	letter	(lower	or	upper	
case)	and	the	rest	of	it	can	be	a	combination	of	letters	and	numbers.	Identifiers	are	case	
sensitive.		
	
1.3	Keywords:	
The	following	list	includes	all	the	keywords	in	TPL.	These	keywords	cannot	be	used	as	
identifiers.	
	
array	
bool	
else	
float	
int	
if	
string	
table	
while	
	
1.3	Constants:	
These	constants	include:	
1.3.1	Integer	Constants:	
An	integer	constant	is	a	sequence	of	digits.	An	integer	is	always	taken	to	be	decimal.	

1.3.2	Floating	Constants:	
A	floating	constant	consists	of	an	integer	part,	a	decimal	point,	and	a	fraction	part.	The	integer	
and	fraction	parts	both	consist	of	a	sequence	of	digits.	The	fraction	or	the	integer	part	can	be	
missing.	

1.3.3	String	
A	string	is	a	sequence	of	characters	surrounded	by	double	quotes	‘‘	’’.		

2.	Conversions:	
There	are	no	supported	implicit	conversion	in	TPL	is	between	any	two	types.		

3.	Expressions:	
3.1	Primary	Expressions:	
3.1.1	Identifier:	
An	identifier	is	a	primary	expression,	provided	it	has	been	suitably	declared.	Its	type	is	specified	
by	its	declaration.		

3.1.2	constant:	
A	decimal	that	can	be	represented	with	int,	or	a	floating	point	constant	represented	as	float.	
String	is	also	another	type	of	constant.	
3.1.3	(expression)	
A	parenthesized	expression	is	a	primary	expression	whose	type	and	value	are	identical	to	those	
of	the	unadorned	expression.		

3.2	Unary	operators:	
Expressions	with	unary	operators	group	right-to-left.		

3.2.1	–	Expression:	
The	result	is	the	negative	of	the	expression,	and	has	the	same	type.	The	type	of	the	expression	
must	be	int	or	float.	

3.2.2	!	expression:	

The	result	of	the	logical	negation	operator	!	is	1	if	the	value	of	the	expression	is	0,	0	if	the	value	
of	the	expression	is	1.	The	type	of	the	result	is	bool.	This	operator	is	applicable	only	to	bool.	

3.3	Multiplicative	Operators:	
The	multiplicative	operators	*,	/,	and	%	group	left-to-right.		

3.3.1	expression	*	expression:	
The	binary	*	operator	indicates	multiplication.	If	both	operands	are	int,	the	result	is	int;	if	one	is	
int	and	one	is	float,	the	former	is	converted	to	float,	and	the	result	is	float;	if	both	are	float,	the	
result	is	float.	No	other	combinations	are	allowed.		

3.3.2	expression	/	expression:	
The	binary	/	operator	indicates	division.	The	same	type	considerations	as	for	multiplication	
apply.	

3.3.3	expression	%	expression:	
The	binary	%	operator	yields	the	remainder	from	the	division	of	the	first	expression	by	the	
second.	Both	operands	must	be	int,	and	the	result	is	int.	In	the	current	implementation,	the	
remainder	has	the	same	sign	as	the	dividend.		

3.4	Additives	Operators:	
The	additive	operators	+	and	−	group	left-to-right.		

3.4.1	expression	+	expression:	
The	result	is	the	sum	of	the	expressions.	If	both	operands	are	int,	the	result	is	int.	If	both	are	
float,	the	result	is	float.	If	one	is	int	and	one	is	float,	the	former	is	converted	to	float	and	the	
result	is	float.	No	other	type	combinations	are	allowed.		

3.4.2	expression	-	expression:	
The	result	is	the	difference	of	the	operands.	If	both	operands	are	int,	or	float	the	same	type	
considerations	as	for	+	apply.	

3.5	Rational	Operators:	
The	relational	operators	group	left-to-right,	but	this	fact	is	not	very	useful;	‘‘a<b<c’’	does	not	
mean	what	it	seems	to.	

3.5.1	expression	<	expression	
3.5.2	expression	<=	expression	
3.5.3	expression	>	expression	
3.5.4	expression	>=	expression	
The	operators	<	(less	than),	>	(greater	than),	<=	(less	than	or	equal	to)	and	>=	(greater	than	or	
equal	to)	all	yield	0	if	the	specified	relation	is	false	and	1	if	it	is	true.	

3.6	Equality	Operators:	
3.6.1	expression	==	expression	
3.6.2	expression	!=	expression	
The	==	(equal	to)	and	the	!=	(not	equal	to)	operators	are	exactly	analogous	to	the	relational	
operators	except	for	their	lower	precedence.	(Thus	‘‘a<b	==	c<d’’	is	1	whenever	a<b	and	c<d	
have	the	same	truth-value).		

3.7	expression	||	expression:	
3.8	expression	&&	expression:	
3.9	Assignment	Operators:	
lvalue	=	expression.		
The	value	of	the	expression	replaces	that	of	the	object	referred	to	by	the	lvalue.	The	operands	
need	not	have	the	same	type,	but	both	must	be	int,	or	float.		

4.	Statements:	
4.1	Expression	Statement:	
Most	statements	are	expression	statements,	which	have	the	form		

expression	; 	

4.2	Compound	Statement:	
So	that	several	statements	can	be	used	where	one	is	expected,	the	compound	statement	is	
provided:		

compound-statement: { statement-list }

4.3	Conditional	Statement:	
	
The	two	forms	of	the	conditional	statement	are		

if	(expression)	statement 	

if	(expression)	statement	else	statement		

In	both	cases	the	expression	is	evaluated	and	if	it	is	1,	the	first	substatement	is	executed.	In	the	
second	case	the	second	substatement	is	executed	if	the	expression	is	0.	As	usual	the	‘‘else’’	
ambiguity	is	resolved	by	connecting	an	else	with	the	last	encountered	elseless	if.		

4.4	While	Statement:	
The	while	statement	has	the	form		

while	(expression)	statement The	substatement	is	executed	repeatedly	so	long	as	the	value	of	
the	expression	remains	1.	The	test	takes	place	before	each	execution	of	the	statement.		

5.	Lists	and	Tables:	
The	two	main	differences	between	C/C++	and	TPL	are	the	ways	lists	and	tables	are	handled.	
5.1	Lists:	
lists	are	a	collection	of	objects	that	do	not	have	a	fixed	length.	In	TPL,	a	list	can	have	only	one	
type.	Lists	can	be	of	any	of	the	types:	int,	float,	or	string.		
5.1.1	Declaring	Lists:	
Declaring	a	list	can	be	as	follows:	
list	string	header	=	{“Hamza”	,	“Jazmati”	,	“Edward”,	“Snowden”}	
list	int	primes	=	{2,3,5,7,11}	
5.1.2	Getters/Setters:	
To	obtain	a	value	from	the	list,	we	use	the	following	syntax:	
primes[3]	
This	will	get	us	the	fourth	element	of	the	list,	which	is	7.	

primes[4]	=	13	
This	will	set	the	value	of	the	fourth	element	of	the	list	to	13.	
5.2.3	Appending:	
To	append	a	new	value	to	the	end	of	the	list,	we	do	as	follows:	
primes.append(17)	
This	statement	should	return	the	index	of	the	newly	added	item,	in	this	case,	5.	
	
5.2	Tables:	
Tables	are	two	dimensional	lists	where	the	header	is	a	string	list	and	each	column	is	a	list	of	a	
specific	type.		
5.2.1	Declaring	a	Table:	 	
table	mytable	=	{“First_Name”,	“Last_Name”,	“Grade”}	{string,	string,int}	
Column	names	cannot	be	the	used	more	than	once	in	the	same	table.	
5.2.2	Getters/Setters:	
To	get	the	value	of	a	specific	cell	in	the	table,	we	do	as	follows:	
mytable[“First_Name”][0]	
To	get	a	specific	column,	we	can	use:	
mytable.”First_Name”	
To	set	a	value	of	a	specific	cell	in	the	table,	we	do	as	follows:	
mytable[“First_Name”][0]	=	“John”	
5.2.3	Appending	Rows:	
To	append	a	row	to	the	table,	we	use	the	following	syntax:	
mytable.appendrow	(“Hamza”,	“Jazmati”,	100)	
5.2.3	Generate	a	column:	
To	generate	a	new	column	from	other	columns	in	the	table,	we	use	the	following	syntax:	
mytable.newcolumn	(“Grade_Out_Of_Ten”	,	“Grade”/10)		
5.2.4	Sorting:	
To	sort	a	column	according	to	a	column,	we	use	the	following	syntax:	
mytable.sort(“Grade”,	asc)	
mytable.sort(“Grade”,	desc)	
asc	indicates	that	the	sorting	is	ascending.	dsec	indicates	descending.		
	
5.2.5	Getting	Row	Count:	
To	get	row	count	of	the	table,	mytable.rowcount.	
	
	
	

Architectural	Design:	
The	main	modules	are:		
The	scanner:	takes	the	program	text	and	converts	it	into	tokens.	
The	parser:		

Test	Plan:	
For	testing,	I	used	the	MicroC	testing	suite.	Test	cases	were	added	before	developing	a	feature	
to	guide	the	development	and	eliminating	any	development	biases.	The	following	test	cases	
were	added:		
	
Test	Case	Name	 Test	Case	Description		
test-float-print-1	 Tests	printing	multiple	float	numbers	
test-float-arth-1	 Tests	simple	operations	on	float	numbers	
test-float-declaration	 Tests	declaring	float	numbers	
	
	

Lessons		Learned:	
	Although	this	project	has	been	a	major	failure	for	me,	I	did	learn	a	lot	of	lessons:		

• If	you	work	full	time,	switch	to	CVN.		
• Doing	the	project	alone	is	not	viable	unless	you	have	a	light	course	load.		
• Being	intimidated	by	how	hard	the	project	is,	is	the	best	way	to	waste	weeks.		
• Start	small	and	use	MicroC.	
• Be	conservative	with	the	requirements	as	much	as	you	can.		

Current	Status:	
Many	features	were	not	in	the	final	build	due	to	time	constrains.	The	following	features	are	
currently	supported:		

• SAST	
• Float	Support:	float	literals	,	float	printing	
• Beginnings	of	String	Support.	

However,	it	is	not	compiling	now	due	to	some	issues	that	I	could	not	fix	in	a	timely	manner.	
	

Code:	
	

Scanner:	

	
	
	 	

TPL:	

	

	
Parser:	

	
	

	
	

	
	
AST:	
	 	

	

	

	

	
SAST:	

	
	
Semant:	
	

	
	

	

	

	
	
Codegen:	
	

	
	

	

	
	

	
	
	

