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The problem: FSMs

➢ Basis of CS and CE
➢ Current standard for representation: 

○ Unintuitive interface
■ Very long descriptions
■ Redundant behavior commands

○ Learning curve from C-like languages
■ Syntax
■ Style

“The less intelligent things you have to do, the more stupid things you have to do.”



The solution: FSMs!

➢ Our solution:
○ Language derived from OOP languages to 

describe and simulate FSMs
○ Duality:

■ Offers user-friendly interface for 
constructing FSMs

■ Retains imperative nature of OOP 
languages

X: “Did you just change everything?”
Y: (Calmly) “Yeah.”



Cool Things 

➢ “Tick function” as clock
➢ Reset function
➢ State boundaries
➢ User-friendly program structure relating to 

FSM diagrams
➢ Automatic generation of header files!
➢ Concurrent execution of FSMs

“But clocks tick. Clocks don’t clock!”



Features of Language

➢ Input and output lists and types
➢ Public variables: Read-global, 

write-local
➢ User-defined types
➢ Most intuitive features of both 

automata and C programming

“So two things. First thing is it might work if I make this an unsigned int. Can I 
make this an unsigned int?”
“Sure. Go ahead.”
“Right. So the second thing is I don’t know how to make this an unsigned int.”
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Abstract Syntax Tree (AST)
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“I’m totally open to new ideas. I just don’t 
think this one in particular works.”



Parser

“Wait, so you’re saying [the] entire parser is a piece of crap?”



LLVM Generation: Tick
entry:
  %null = icmp eq { i32, i8* }* %1, null
  br i1 %null, label %reset, label %check

reset:       ; preds = %entry
  %reset1 = getelementptr ...
  store i32 1, i32* %reset1
  %reset2 = getelementptr ...
  store i32 0, i32* %reset2
  ret { i32, i32 }* null

check:          ; preds = %entry
  %ptr = getelementptr ...
  %running = load i32, i32* %ptr
  %run = icmp ne i32 %running, 0
  br i1 %run, label %update, label %halted

update:       ; preds = %check
  %state = alloca { i32, i32 }
  call void @memcpy(...)  ; copy to state
  call void @halting(...) ; FSM update call
  call void @memcpy(...)  ; copy from state
  ret { i32, i32 }* %0

halted: ; preds = %check
  ret { i32, i32 }* null

entry:
  %halting = getelementptr ...
  %halting1 = load i32, i32* %halting
  switch i32 %halting1, label %"*halt" [
    i32 0, label %"*init"
    i32 1, label %One
    i32 2, label %Two
  ]

“Those weird little badooshkins…”

"*init": ; preds = %entry
  br label %One

"*halt":  ; preds = %entry
  %ptr = getelementptr ...
  store i32 0, i32* %ptr
  ret void

One:        ; preds = %"*init", %entry
  %p = getelementptr ...
  %p2 = load i32, i32* %p
  %tmp = icmp eq i32 %p2, 1
  br i1 %tmp, label %then, label %else
  [... other blocks]
  ret void

Two:                      ; preds = %entry
  %p9 = getelementptr ...
  %p10 = load i32, i32* %p9
  %tmp11 = icmp eq i32 %p10, 1
  br i1 %tmp11, label %then7, label %else8
  [... other blocks]
  ret void

➢ Two initial checks
○ Reset: reset all values
○ Halted: return 0

➢ Allocate memory, update states

define { i32, i32 }* @test_halt_tick({ i32, i32 }*, { i32, i8* }*, { i32 }*)

define void @halting({ i32, i32 }*, { i32, i32 }*, { i32, i8* }*, { i32 }*)

In FSM, branch to each 
state through switch



“OCaml is a weird language. But I am also weird, so it is a good match.”

➢ Uses shell scripts similar to those of MicroC 
➢ 3 Scripts

○ testall.sh
○ traffic.sh
○ adventure.sh

➢ Automatic generation of C wrappers
➢ 56 test cases 

○ 34 positive tests 
○ 22 negative tests

➢ Adventure Program

Test Suite



Uses and Future Steps

➢ Applications
○ Testing state reachability
○ Simple Concurrent FSM execution
○ Master-Slave Concurrency Problems
○ Testing algorithmic state machines

➢ Future steps
○ Implementing Mealy machines and DFAs and NFAs
○ State minimization

“We do the thing, then the thing, and then a thing thing. Wait, there’s another thing.”



Lessons Learned 
➢ Communicate

○ Know what everyone is doing
○ Make sure they are doing it per group specifications

➢ Plan
○ Think more about what the program will need before 

coding anything
○ Set an end goal for everyone to work towards

➢ Set Realistic Goals
○ Know the time constraints of each group member

➢ Working on the same platform

“We just made progress”
“We didn’t. The net movement has been very minimal”



DEMO TIME!!!


