
Shalva Kohen

Arunavha Chanda

Kai-Zhan Lee

Emma Etherington

The problem: FSMs

➢ Basis of CS and CE
➢ Current standard for representation:

○ Unintuitive interface
■ Very long descriptions
■ Redundant behavior commands

○ Learning curve from C-like languages
■ Syntax
■ Style

“The less intelligent things you have to do, the more stupid things you have to do.”

The solution: FSMs!

➢ Our solution:
○ Language derived from OOP languages to

describe and simulate FSMs
○ Duality:

■ Offers user-friendly interface for
constructing FSMs

■ Retains imperative nature of OOP
languages

X: “Did you just change everything?”
Y: (Calmly) “Yeah.”

Cool Things

➢ “Tick function” as clock
➢ Reset function
➢ State boundaries
➢ User-friendly program structure relating to

FSM diagrams
➢ Automatic generation of header files!
➢ Concurrent execution of FSMs

“But clocks tick. Clocks don’t clock!”

Features of Language

➢ Input and output lists and types
➢ Public variables: Read-global,

write-local
➢ User-defined types
➢ Most intuitive features of both

automata and C programming

“So two things. First thing is it might work if I make this an unsigned int. Can I
make this an unsigned int?”
“Sure. Go ahead.”
“Right. So the second thing is I don’t know how to make this an unsigned int.”

System Architecture

Sake file

C wrapper
file

Tokens AST SAST

C header file

Sake
executabl

e
C Object

Tick
function
(LLVM IR)

User’s end

scanner.mll parser.mly restruct.ml
 semant.ml

header
_gener

ator.m
l

llv
m_g

ene
rat

or.
ml

GCC compilation

GCC linking

Abstract Syntax Tree (AST)

program

input

output types

fsms

fsm

 publics

locals

body

stmt

stmt
...

“I’m totally open to new ideas. I just don’t
think this one in particular works.”

Parser

“Wait, so you’re saying [the] entire parser is a piece of crap?”

LLVM Generation: Tick
entry:
 %null = icmp eq { i32, i8* }* %1, null
 br i1 %null, label %reset, label %check

reset: ; preds = %entry
 %reset1 = getelementptr ...
 store i32 1, i32* %reset1
 %reset2 = getelementptr ...
 store i32 0, i32* %reset2
 ret { i32, i32 }* null

check: ; preds = %entry
 %ptr = getelementptr ...
 %running = load i32, i32* %ptr
 %run = icmp ne i32 %running, 0
 br i1 %run, label %update, label %halted

update: ; preds = %check
 %state = alloca { i32, i32 }
 call void @memcpy(...) ; copy to state
 call void @halting(...) ; FSM update call
 call void @memcpy(...) ; copy from state
 ret { i32, i32 }* %0

halted: ; preds = %check
 ret { i32, i32 }* null

entry:
 %halting = getelementptr ...
 %halting1 = load i32, i32* %halting
 switch i32 %halting1, label %"*halt" [
 i32 0, label %"*init"
 i32 1, label %One
 i32 2, label %Two
]

“Those weird little badooshkins…”

"*init": ; preds = %entry
 br label %One

"*halt": ; preds = %entry
 %ptr = getelementptr ...
 store i32 0, i32* %ptr
 ret void

One: ; preds = %"*init", %entry
 %p = getelementptr ...
 %p2 = load i32, i32* %p
 %tmp = icmp eq i32 %p2, 1
 br i1 %tmp, label %then, label %else
 [... other blocks]
 ret void

Two: ; preds = %entry
 %p9 = getelementptr ...
 %p10 = load i32, i32* %p9
 %tmp11 = icmp eq i32 %p10, 1
 br i1 %tmp11, label %then7, label %else8
 [... other blocks]
 ret void

➢ Two initial checks
○ Reset: reset all values
○ Halted: return 0

➢ Allocate memory, update states

define { i32, i32 }* @test_halt_tick({ i32, i32 }*, { i32, i8* }*, { i32 }*)

define void @halting({ i32, i32 }*, { i32, i32 }*, { i32, i8* }*, { i32 }*)

In FSM, branch to each
state through switch

“OCaml is a weird language. But I am also weird, so it is a good match.”

➢ Uses shell scripts similar to those of MicroC
➢ 3 Scripts

○ testall.sh
○ traffic.sh
○ adventure.sh

➢ Automatic generation of C wrappers
➢ 56 test cases

○ 34 positive tests
○ 22 negative tests

➢ Adventure Program

Test Suite

Uses and Future Steps

➢ Applications
○ Testing state reachability
○ Simple Concurrent FSM execution
○ Master-Slave Concurrency Problems
○ Testing algorithmic state machines

➢ Future steps
○ Implementing Mealy machines and DFAs and NFAs
○ State minimization

“We do the thing, then the thing, and then a thing thing. Wait, there’s another thing.”

Lessons Learned
➢ Communicate

○ Know what everyone is doing
○ Make sure they are doing it per group specifications

➢ Plan
○ Think more about what the program will need before

coding anything
○ Set an end goal for everyone to work towards

➢ Set Realistic Goals
○ Know the time constraints of each group member

➢ Working on the same platform

“We just made progress”
“We didn’t. The net movement has been very minimal”

DEMO TIME!!!

