
Chapter 1

Language Tutorial

1.1 Setup

1.1.1 install dependencies

Download libuv from the following link: http://dist.libuv.org/dist/v1.11.0/
Follow the instructions to install:
sudo apt-get install automake
sudo apt-get install libtoolize
./autogen.sh
./configure
make
make check
sudo make install
echo "export LD_LIBRARY_PATH=\"/usr/local/lib\"" >> ~/.bashrc
source ~/.bashrc

1.1.2 install ocaml

add-apt-repository ppa:avsm/ppa
apt-get update
apt-get install ocaml ocaml-native-compilers camlp4-extra opam

1.1.3 make pipeline executable

navigate to the src folder
enter command ’make’

1.1.4 run tests

navigate to the src folder
enter command ’python testall.py’

1

CHAPTER 1. LANGUAGE TUTORIAL 2

1.1.5 Run files with the pipeline executable as follows:

1.2 Program composition

All statements in a pipeline program must be in one of the following blocks(function, pipe, anonymous
block) with global variables as exception.

global int x = 10; // global variable not in a block, allowed

function string hello(){
return "hello" // statement in a function block, allowed

}

{
int a; //statements in anonymous block, allowed
print_a
}

pipe{
print_str("stmt in a pipe")// statement in a pipe block, allowed

}

print_int(x)// illegal, statement that’s not in any block and not a global variable
declaration.

1.3 Variable declaration and assignment

1.3.1 primitive types

pipeline has 4 primitive types:

• int

• float

• string

• boolean

variable declaration for primitive types works as follow:

CHAPTER 1. LANGUAGE TUTORIAL 3

int a; // type var-name for variable declaration

int b = 1;// type var-name expr, for variable declaration and initialization

a = 10; //variable assignment

1.3.2 string manipulation

String type supports the following operations:

• len

• sub

• cmp

• concat(with $)

string a = "hello";//declare string variable a

string b = " world";//declare string variable b

int length;

length = len(a); // length = 5

bool str;

str = cmp(a,b);//str = false

str = sub(a,b);//str = false

string c = a$b;// c = "hello world" $

1.3.3 global variables

global variables in pipeline is declared with the global keyword and assessable throughout the program.
Also, global variable declaration need not to be inside a block.

global int a = 10;//global variable a.
function int foo(){

return a;//global variable a is accessible.
}

1.3.4 List

List is a compound type that can be applied all primitive types. List cannot be declared globally like
primitive types
The pipeline list is a singly likened list supports the the following operation:

CHAPTER 1. LANGUAGE TUTORIAL 4

• addleft

• addright

• popleft

• list_free

• access

list-declaration

int a[]; //int-list declaration

float b[]; //float-list declaration

string c[]; //string-list declaration

bool d[]; //boo-list declaration

list-append

addleft(a,1) //append 1 to the left of a, a = [1]
addright(a,2) // append 2 to the right of a, a = [1,2]
popleft(a) // pop the left-most element in a, a = [2]

list-access

// let a = [1,2,3,4,5]
a[0] //1
a[1] //2
a[4] //5

If a list is declared, it must be freed in order to prevent memory leak in the program list-free

list_free(a)//release the memory of a and prevent memory leak

1.3.5 struct

Structs are a way for the user to define his/her own aggregate data type. It is a collection of variables that
can be called and used for whatever purpose a user needs.
A struct must first be defined in the outermost scope before it can be used. It cannot be defined within a
block, function or pipe. A struct can only contain a File, int, float, bool or string type, and only declarations
without initialization may be used in the struct. The syntax to define a struct is with the struct keyword
followed by the name of the struct and a block of statements between curly-braces and after the last curly
brace there is a semicolon.

/* struct definition */
struct struct_name {

[declaration statements]
};

To use your struct in the body of your function simply use the keyword followed by the name of the variable.
A struct variable must be declared in pipeline first, and it can never be initialized with a struct literal.

/* proper struct declaration */

CHAPTER 1. LANGUAGE TUTORIAL 5

struct struct_name;
/* improper struct declaration */
struct struct_name = { [statements] };

the second case will fail compilation. In order to use the variables inside of the struct you simple use the
struct variable name followed by dot operator "." and the name of the struct variable.

/* struct use */
struct_name.variable = expr;
expr = struct_name.variable;
expr = expr + struct_name.variable;
/* etc... */

Here is an example program that uses a struct:

/* define the struct */
struct Example {

int i;
float f;
bool b;
string s;
struct A a;
File fl;

};
{

struct Example e;
e.s = "Hello World\n";
e.i = 1;
int i = e.1 + 1;
if (e.i < 3) {

print_string(e.s);
}

}

1.3.6 file

File IO is done with a File object. First you must declare a File object and then use the init_file_obj
function to initialize the file object and open the file. A file object cannot be initialized and declared in one
statement.

/* File declaration and initialization */
File file_object;
init_file_obj(file_object, file_name, file_mode);

for the initf ileobjyougiveitfirstthenameofthefileobject, thenastingcontainingthenameofthedesiredfile, andlastlyastringthatrepresentsthemodeitcanitisopenedin.pipelineusesthestandardcmodes, sothemodemustbeoneofthefollowingstrings :

string wall = " bottles of beer on the wall"; string beer = " bottles of beer."; string pass =
"Take one down and paas it around, "; string nomore = "No more bottle of beer on the wall"; if(i>1)
printint(i); printstr(wall", "); printint(i); printstr(beer""); printstr(pass); printint(i−1); printstr(wall".");
else printint(i); printstr(wall","); printint(i); printstr(beer""); printstr(pass); printstr(nomore""); printstr(nomore
", no more bottle of beer"””); printstr(”Gotothestoreandbuysomemore, 99bottlesofbeeronthewall.”);

CHAPTER 1. LANGUAGE TUTORIAL 6

1.4 function
while pipeline has many buildin functions, it also allows custom function declaration. The fallowing
function calculates the gcd of two given numbers and returns the result.

function int gcd(int a, int b){
while(a != b){

if(a>b){
a = a-b;

}else{
b = b-a;

}
}
return a;

}
{
int result = gcd(14,21)// result = 7
}

pipeline also supports recursive functions.

function int fib(int x){//function the calculates the nth Fibonacci numbers

if(x==0){
return 0;

}
if (x==1){

return 1;
}
return fib(x-1)+fib(x-2);

}
{
int c = fib(4);

print_int(c);
}

1.5 pipe
Pipes are created to enable asynchronous programming using the event-driven architecture. Ideally
the code that is blocking, and the variables dependent on it, go inside a pipe. Multiple pipes can
be created in the program.

pipe{
int a ;
int b ;
while(1);
int c = a + b;
print_int(a+b);

}

CHAPTER 1. LANGUAGE TUTORIAL 7

1.6 Routing
Pipeline language supports the following HTTP functions - LISTEN, GET, PUT, POST. All these functions
are supported only inside a pipe. The Listen function has to go first inside the pipe before anything
else, and the rest of the HTTP functions require LISTEN to be present for them to execute. The listen
function takes a string (IP Address) and an integer (the port number). The other HTTP functions take
“GET”, “POST”, “PUT”, “DELETE” as the 1st argument; the route as the 2nd argument; and the callback
function(function name is passed as string) as the 3rd argument.

function string get_user_handler(){
return "You sent me a GET request !!!???! ";

}
function string put_user_handler(){

return "You sent me a PUT request !!!???! ";
}
function string post_user_handler(){

return "You sent me a POST request !!!???! ";
}
function string delete_user_handler(){

return "You sent me a DELETE request !!!???! ";
}
pipe {

listen("127.0.0.1",8080);
http("GET","/user","get_user_handler");
http("PUT","/user","put_user_handler");
http("POST","/user","post_user_handler");
http("DELETE","/user","delete_user_handler");

}

1.7 build-in functions
build-in functions provided by the pipeline language:

• print_int(int) - print a int to stdout

• print_float(float) - print a float to stdout

• print_bool(bool) - print a bool to stdout

• print_string(string) - print a string to stdout

• print_error(string) - print a string to stderr

• sleep(int) - block the program for a given number of seconds

• exit(int) - exit the program with given status

