
MatriCs
the ultimate matrix manipulation language

Talal Asem Toukan [tat2132] - Emmanuel Koumandakis [ek2808] - Duru Kahyaoglu [dk2565] -

Florian Shabanaj [fs2564] - Nikhil Raghav Baradwaj [nrb2129]

What if you had the power
to create matrices of any
dimension?

Time to go beyond dimensions...

MatriCs
the ultimate matrix manipulation

language

MatriCs is a specialized language for

matrix manipulation.

● Strongly typed language

● C - like syntax

● Special operators for vectors and

matrices

● Compiles into LLVM

Welcome to the world of MatriCs

Let’s learn some MatriCs

MatriCs - the basics
★ Primitives: Integer, Boolean, Float,

String, Void

★ Special Data Type: n dimensional

Vectors

★ Comments:

○ // - for single line comments

○ /* */ - for block comments

★ Arithmetic Operators:

+,-,*,/,++,--,%

★ Control Flow: if, else if, else,

while, for, return

★ Conditionals: ==, !=, <, <=, >, >=

★ Logical Operators: !, &&, ||

★ Standard Library: Matrix

Addition, Matrix Subtraction,

Print Matrices, Transpose,

Identity

MatriCs Properties

Declaration of a 4
Dimensional
matrix!!!!

Comments

MatriCs Properties Continued

if/else for

while

Some Other Very Interesting Features That We Want To Share!!!

★ Automatically cast the results of binary
operations into a float when we have one
integer and one float

★ We can generate matrices of any
dimension - even 11 dimensional
matrices!!

Behind the Scenes

Compiling MatriCs

System Architecture

hello.neo preprocessor.ml scanner.mll parser..mly

semant.mlcodegen.mlhello.ll

ast.ml

sa
st

.m
l

Testing in the Works

Ensuring That MatriCs Always Runs

./build.sh

Build all of the files to
ensure that

everything works

./neo.native

Ideal for running simple test
cases or with single files -

displays the ll file immediately
after successful compilation

./testall.sh

Testing script to test
all of the test cases at

once

test.ll

test.diff

testall.log

test.neo

test.out

Meet the MatriCs People

“Yes we took the red pill to
stay in Wonderland and see
how deep the rabbit-hole

goes”

Lessons Learned

Functional programming combines the flexibility and power of abstract mathematics

with the intuitive clarity of abstract mathematics.

Lessons Learned
- Start as late as possible to learn about efficiency

- You definitely have to push your limits conceptually in terms of recursion.

Downside is that when you try to brag about building a programming language

no-one seems to know what that means….

- The LLVM documentation (the actual ones) is a black hole, you can spend your

whole life trying to find the meaning of GEP…

- Simple things that you take for granted are often hard to implement

Show Time!!

Time to see MatriCs in action

