Language Guru: Kimberly Hou - kjh2146
Systems Architect: Rebecca Mahany - rim2175

ager: Jorge Orbay - jac2154
ster: Rachel Yang - ry227

Overview o

x MatchaScript is a general-purpose statically
typed programming language that is
convenient for both imperative and functional
programming

x The syntax of MatchaScript can be described
as “JavaScript, but with type specifications”

x No main method required

test-print-hello-world.ms =

1 |print("Hello world!");

e https://github.com/RebeccaMahany/MatchaScript

o 220+ commits to master
e Process: Hello World, full-features front-end, pare

down features for backend
SAST

Nested Functions
(frontend)

Hello World

10

ﬂh-..__.

Jan 29 Feb 05 Feb 12 Feb 19 Feb 26 Mar 05 Mar 12 Mar 19 Mtar 26 Apr 02 Apr 09 Apr 16 Apr 23 Apr 30 May 07

Scanner 0 Codegen

INPUT: ‘program INPS;"T:E; _ I;P"J'T"_":S'T INPUT: SAST.
text. A0 P ' : / OUTPUT: LLVM

OUTPUT: tokens. Lol 4 OUTPUT: SAST. module.

Interesting fe

function String myName(String firstMame) {

Currently implemented through Bl i

scanner, parser, AST, and semantic N P
checking; codegen in progress)

Based off of JavaScript’s use of return lastName;

closures, where inner functions can :

access their parent and ancestors’ scope Meen s v e ("stephen);

) tor = 1 ~ print(theName("Edwards"));
. Tty = byps and stmt = ¥

g ittiailr, e Uiy | Block of stmt list =

| feBody: stmt list; | Exprstmt of expr

¥ | varDecl of vdecl

and fdecl = { - {CFunDecl of fdecl

~ fdReturnType : typ: | Returm of expr

. fdFname : string; | If of expr * stmt * stmt

. fdFormals : bind list; | For of expr * expr * expr * stmt

 fdBody : stmt List; - | While of expr * stmt

¥

Interesting

function fun sumFour{int w) {

x Currently implemented through " return function fun (int x) {
scanner, parser, AST, and semantic :“t“::t:::“:i::ti:: E:t{ﬂ.t{z] ’
checking return w + x + y + 2}

x As part of currying, use of anonymous 3, L
functions also supported L g

int x = sumFour(1}(2)(3){(4); /% 18 =/

x We implemented a basic standard library based on
common functions available in JavaScript and other
object-oriented languages

x Right now, mostly math functions for both floats and
integers: pow, ceil, floor, round, min, max, abs

x Automatically included in all .ms files during code
generation

x test-frontend.sh: For each test case:
x Pretty-print the AST generated for a tests/test-<filename>.ms file
x Run scannerprint.ml (generate tokens from program text) on both:
x The original tests/test-<filename>.ms file
x The pretty-printed AST
x If the two token files match, the AST was generated properly and the AST
pretty-printer works
x test-all.sh
x Fail tests
x Tests error-identification in analyzer.ml
x Pass tests
x Tests proper code generation

X

Kimberly: Listen to Prof. Edwards and focus on building
the entire compiler at the same time, even if it means
re-doing some parts when adding in the next feature.
Becca: Pick realistic goals and start early.

Jordi: Have a flexible battle plan.

Rachel: Write a good outline of the code components,
and specify interfaces (AST, SAST) early. (e.g. by
specifying SAST, one group member can work on
Analyzer and another can work on Codegen at the same
time). Also, don’t get hung up on one feature (nested
functions).

Demo of Matcha

function void primeFactor{int a) {

print{"Current number:"}:
print{a);

int counter = Z2;

int prime = 1;

int current_a = a;

int b_mod = &;
if (a = I) {
. print("This number is prime"});
¥
if (a<l) {
print("A number greater than @ please");
}

}

ime Factorization

if (a=1) {
while (counter <= current_a) {
b_mod = current_a % counter;
if (b_mod ==@) {
- if {counter !'= a) {
prime = @;
print{counter);

3

else {
i | counter = counter+l;
f I
}
else {
; counter = counter+l;
}

¥
if (prime==1) {

f print("it's prime");
}

}
primeFactor(5);

primeFactor(27);
primeFactor(43);

current_a = current_a / counter

5
This number is prime
27

43
This number is prime

Demo: Prime

function int primeNumberChecker{int a) {
: print(a);

int counter = 2;

int current = 1;

int b_mod = &;

if (a = 1) {

: print("this is prime");

¢

if (a<1) {

: print{"A number greater than @ please");
¥

per Checker

if (a=1) {
while (counter < a) {
; b_mod = a % counter;
1f {b_mod ==8) {
: current = 8;
i 5
: counter = counter + 1;
}
if (current==1) {
: print("it's prime"};
5

else {
. print("it's not prime");
.
-}
)
primeNumberChecker{5);

primeMNumberChecker{25);

