
MatchaScript
“Like JavaScript, but better for you.”

Language Guru: Kimberly Hou - kjh2146 
Systems Architect: Rebecca Mahany - rlm2175 

Manager: Jorge Orbay - jao2154 
Tester: Rachel Yang - ry2277



Overview on MatchaScript: motivations

× MatchaScript is a general-purpose statically 
typed programming language that is 
convenient for both imperative and functional 
programming

× The syntax of MatchaScript can be described 
as “JavaScript, but with type specifications”

× No main method required



MatchaScript on GitHub

● https://github.com/RebeccaMahany/MatchaScript
● 220+ commits to master
● Process: Hello World, full-features front-end, pare 

down features for backend

Hello World

SAST
Nested Functions 
(frontend)



Architecture overview



Interesting features: Nested functions

× Currently implemented through 
scanner, parser, AST, and semantic 
checking; codegen in progress

× Based off of JavaScript’s use of 
closures, where inner functions can 
access their parent and ancestors’ scope



Interesting features: Currying

× Currently implemented through 
scanner, parser, AST, and semantic 
checking

× As part of currying, use of anonymous 
functions also supported



Standard Library

× We implemented a basic standard library based on 
common functions available in JavaScript and other 
object-oriented languages

× Right now, mostly math functions for both floats and 
integers: pow, ceil, floor, round, min, max, abs

× Automatically included in all .ms files during code 
generation



Test Suite

× test-frontend.sh: For each test case:
× Pretty-print the AST generated for a tests/test-<filename>.ms file
× Run scannerprint.ml (generate tokens from program text) on both:

× The original tests/test-<filename>.ms file
× The pretty-printed AST

× If the two token files match, the AST was generated properly and the AST 
pretty-printer works

× test-all.sh
× Fail tests

× Tests error-identification in analyzer.ml
× Pass tests

× Tests proper code generation



× Kimberly: Listen to Prof. Edwards and focus on building 
the entire compiler at the same time, even if it means 
re-doing some parts when adding in the next feature.

× Becca: Pick realistic goals and start early.
× Jordi: Have a flexible battle plan. 
× Rachel: Write a good outline of the code components, 

and specify interfaces (AST, SAST) early. (e.g. by 
specifying SAST, one group member can work on 
Analyzer and another can work on Codegen at the same 
time). Also, don’t get hung up on one feature (nested 
functions).

Lessons learned



Demo of MatchaScript: Prime Factorization



Demo of MatchaScript: Prime Factorization 
Results

5
This number is prime
27
3
3
3
43
This number is prime



Demo: Prime Number Checker


