
MatCV
Let’s do Matrices Better

The Objective

Linear Algebra is all the rage

A language to simplify Matrices

Team Roles

Language Guru - Abhishek Walia

Project Manager - Anuraag Advani

System Architect - Shardendu Gautam

Matrix Hello World

 function main() {

a = 1; /*We also had /*nested comments*/ working */

 b = 2;

 print (a+b);

return 0;

 }

Architecture

Key Features

Just start writing code, no main function required!!

a = 2;
b = 2;
c =1+b;
d = [5] [6];
….

Types Supported

● Integer
● Boolean
● Matrices (N - Dimensional!)
● Void

But don’t worry about them, as they are
inferred!!

Type Inference

After semantic analysis:

 Mat(2) b =foo();

 Mat(2) Func_foo(){

 Mat(2) c = {1,2,3;4,5,6;7,8,9};

 return c;

}

}

Code:

b = foo();

function foo(){

c={1,2,3;4,5,6;7,8,9};

 return c;

}

Type Inference

After semantic analysis:

 Mat(2) b =foo();

 Mat(2) Func_foo(){

 Mat(2) c = {1,2,3;4,5,6;7,8,9};

 return c;

}

}

● Construct an annotated
parse tree.

● Collect constraints.
● Solve these constraints

to infer types.

Function

● We pass matrices by reference in functions, a design choice to make our
language convenient for users.

● However, integers and booleans are passed by value.
● To declare a function the following syntax is use:

function foo(){

}

● “main()” is not needed and is reserved and can not be used as a function.

Key Features

How many dimensions do you want in a matrix?

a = [5] [3] [2] [3]....

We support n dimensions along with key features like add, subtract, etc.

Want a different way to allocate matrices?

We support it: a = { 1 , 2 , c + d , 4 ; 5 , 6 , func() , a[0] ; 9 , foo + bar , 11 , 12}

It’s all an illusion

● We use only 1’D matrices but the user uses it as a normal
n’D matrix, you ask how? Well, some pointer magic.

Want the index of an element?

Index 0:
Number Of
Dimensions

Index 1:
Size along
Dimension 1

Index 2:
Size along
Dimension 2

……. Matrix
content
In Row
major ->

Scoping done right

Declare variables anywhere:

A local and global map are used to manage the
scope for blocks.

Separate memory map to keep track of allocations

Key Features

Control Flow operations

If..else

for(;;)

while()

continue

For loop done right

Added an additional block to
support continue.

Memory Management

● We malloc memory for the variable sized matrices on the
heap and the integers and booleans are stored on the
stack.

● A memory map is maintained which can be used to free
the unused memory.

A powerful language with a powerful library

Supports matrix functions eg.

● Add
● Subtract

Result of the operation stored in the first operand

Supports Logic For Garbage Collection
Local Global Put in memory map? Action

Yes Yes Yes Put, alloca, add to local map

Yes No Yes
Put, alloca, add to local map

No Yes No Alloca

No No Yes Alloca, Add to local map

Testing

Separate Testing for different modules

Pass and fail tests

● Parser/Scanner tests
● Semant tests
● Codegen Tests
● AST Printing to ease debugging

Demo Time!

