
Jiangfeng Wang, David Rincon-Cruz, Wode ‘Nimo” Ni, Chi Zhang

Overview

What is MPL?
Matrices

- Matrix Arithmetic

- Apply Function

LLVM

- MPL compiles to LLVM IR

- LLVM is flexible and works

across multiple platforms

Motivation

- C/Java/Matlab - like Syntax

- Programmable Matrix

Operations

- Lightweight and intuitive

without math background

 Images

- Reading in images

- Manipulating Pixels

- Writing images

Language Syntax

Programming in MPL
Comments

/* This is a comment*/

Primitives

int, float, bool, void, string, Mat

Control Flow

if, else, while, return

Arithmetic Operator

+ - * / = ++ --

Conditional Operator

== != > < >= <=

Logical Operator

!, &&, ||

Matrix

[1,2;3,4] [1.5,2.5;3.5,4.5]

Entry function

int entryf() {

return 1;

}

Sample MPL program
Calculating GCD

Architecture

Architecture

➔ Added SAST for matrix
dimensional information inferred
by Semant

➔ C functions for image and
console IO

➔ Not too different from MicroC
➔ Generating code for the Apply

operator

Generating Code for Entry functions

➔ <function> @ <Mat>
➔ Generate while loops over

the target matrix
➔ neighbors passed in by

value
➔ Moore neighborhood
➔ Edge problem: a torus!

Testing

Testing

➔ Scanner test and
Program test

➔ MicroC’s style of test
is efficient.

➔ For our language,
printm() is the most
useful function for
testing.

➔ Example : @ Apply
test

Project Management

Project Timeline

2/8
Project
Proposal

2/22
LRM

3/5
Scanner,
parser, ast

3/28
Hello World

3/28-5/8
Semantic checker, Codegen

Project Management

➔ 3-4 weekly meetings
➔ TA advising meetings
➔ Dividing tasks and

pair programming
➔ Multiple branches

Contribution

Jiangfeng and David: Design, scanner,
parser, ast, semantic checker, sast

Nimo and Chi: Skeleton of Scanner
and Parser, Codegen, example
programs, test suite, game of life

Lessons Learned

Lessons Learned
Jiangfeng: Start early. Micro C and previous projects
are extremely helpful as sources of instruction.

David: It’s better to argue out the features of the
language so that everyone is on board. Pair
programming keeps everyone on board and
provides sanity checks.

Chi: Understanding of code is important. Especially
when you try to learn from previous project.

Nimo: Frequency of the meetings is important.
Incremental development is always better than
merging big chunks of code

Conway’s Game of
Life

➔ Any live cell with fewer than two live
neighbours dies, as if caused by
underpopulation.

➔ Any live cell with two or three live
neighbours lives on to the next generation.

➔ Any live cell with more than three live
neighbours dies, as if by overpopulation.

➔ Any dead cell with exactly three live
neighbours becomes a live cell, as if by
reproduction.

➔ There are known patterns

Demo
➔ Image Convolution
➔ Game of Life Simulation

