
A Matrix Manipulation Language 
 

Julia Troxell (jst2152) - Sam Stultz (sks2200) Tessa 
Hurr (trh2124) 

Emily Song (eks2138) Michelle Lu (ml3720) 
 
 



Introduction 
J-STEM is an imperative programming language that facilitates matrix 
manipulation. Its key features are as follows: 

❏ Strongly typed 

❏ The main datatype is a matrix 

❏ Standard library focused on matrices 

❏ Compiles to the Low Level Virtual Machine (LLVM) 

 



Timeline 

Feb 8,  
Feb 22 

Project 
Proposal, 

LRM 

Mar 21 

Scanner & 
Parser 

Mar 26 

Codegen 

Mar 27 

Hello, World 

May 9 

Final Report 



Language Overview 
Primitive Types: 
int, float, bool, char, string 

Data Types: 
Rows and Matrices 
 

Operators: 
 
Standard Arithmetic Operators 
Scalar Matrix Operations 
Arithmetic Matrix Operations 
 
$ access pointer 
$$  
# dereference pointer 
~~ pointer increment 
 

Declaration/Initialization: 
int z; 
z = 3; 
Tuple: 
int(%3%) t; 
T = (% 1, 2, 3 %); 
Row: 
int[5] x; 
x[0] = 4; 
Matrix: 
int[2][2] y; 
y[0][1] = 4; 
 

Function Declaration: 
def int multiply(int a, 
int b) { 

 /* function */ 
} 
 

Control Flow: 
if (True){ 

 print (42); 
} 
else{ 

 print(8); 
} 
 
while (a>0){ 

 a = a - 1; 
} 
 
int i; 
for (i=0; i<5; i=i+1){ 

 print(i); 
} 
 
int[2][2] m; 
m = {% 1, 2 | 3, 4 %}; 
for (row in m) { 

 print_rowi(row); 
} 

File Extension:   .JSTEM 
 



Hello, World! 

def int main() { 

 prints(“Hello world”); 

 return 0; 

} 



Brief Tutorial 



Architecture 

Input 
File 

scanner.
mll parser.mly semant.ml codegen.

ml LLVM 

Tokens AST 

AST 



Testing 
Testing automation program that goes through all of the “compiler_tests” and 

runs them 

Tests Directory 

Compiler Tests: compiler_testing.sh 

Success & fail tests included 

Scanner Tests: scanner_testing.sh 

Parser Tests: parser_testing.sh 

Continuous integration with Travis CI 



Lessons Learned 
Tessa: Ask a lot of questions because there isn’t much documentation, keep asking questions if you don’t 
understand 

Julia: The best way to understand the code is to try to write your own functions. You’ll run into tons of 
bugs but debugging forces you to really get to know the code 

Michelle: Continuously added in-depth failing and successful tests as you add each new feature to catch 
bugs early on, add descriptive fail exceptions and errors to help you debug   

Emily: Understand OCaml programming, how the components of the compiler fit together, and set 
concrete goals/deadlines in order to always be making progress 

Sam:  The importance of using version control and having good team communication 



Demo 


