

DCL
Project Manager: William Essilfie (wke2102)
System Architect: Craig Rhodes (cdr2139)
Language Guru: Ashutosh Nanda (an2655)

Tester: Chang Liu (cl3043)

Chapter 1: Introduction 1
Background 1

Chapter 2: Language Tutorial 1
Language Compilation 1

Using the Compiler 2

Chapter 3: Language Resource Manual 2
Introduction 2

Lexical Conventions 2

Comments 2

Examples 2

Identifiers 3

Keywords 3

Constants 3

Integer Constant 3

Double Constant 3

String Constant 4

Types 4

Integer (int) 4

Double (double) 5

void 5

Arrays 5

Casting 6

Expressions and Operators 6

Expressions 6

Function Calls to Expressions 7

Array Access as Expressions 7

Assignment Operators 7

Arithmetic Operators 7

Conditional Operators 8

Length Operator 9

Tilde Operator 9

Operator Precedence 10

Statements 10

Expression Statements 10

Declaration Statements 11

Control Flow Statements 11

If/else statements 11

for and while Statements 12

Callbacks 12

Code Examples 14

Language Grammar 19

Standard Utilities 23

read 24

write 24

Chapter 4: Project Plan 24
Project Planning 24

Specification Process 25

Development Process 25

Testing Process 25

Team Responsibilities 26

GitHub 26

Project Log 26

Git Commit History 27

Software Development Environment 53

Programming Style Guide 53

Chapter 5: Architectural Design 54
Diagram Overview 54

Scanner 54

Parser 54

Semant 55

Codegen 55

Who Did What 55

Chapter 6: Test Plan 55
Unit and Integration Testing 55

Test Suite and Automated Regression Testing 56

Test Cases and Outputs 57

Chapter 7: Lessons Learned 104
Ashutosh 104

Chang 105

Craig 106

William 106

Chapter 8: Code Listing 107
DCL.ml 107

Scanner.mll 108

Parser.mly 113

Semant.ml 121

Ast.ml 135

Codegen.ml 141

Externalcalls.c 171

 1

Chapter 1: Introduction
Dynamic Callback Language (DCL) is an event-driven programming language that can
be used for a variety of purposes. This language was designed to make programming
both easy and educational for new programmers as well as to make handling special
cases even easier for more advanced developers. Syntactically, DCL is a mix of Java
and C. This allows users to access many of the low-level systems of the C language
while also having the nice additions of easier ways for string concatenation as well as
easier to read code. A lot of this is made possible via DCL’s compilation to LLVM IR.
LLVM IR, a cross-platform runtime environment, is useful because it will allow this
language to run on any system (ex. Windows, Linux, MacOS, etc.) that has an LLVM
port. The main feature of DCL is its event-driven callback system. Essentially, callbacks
allows variables to have global sets of instructions that need to be executed depending
on the state of themselves and other variables; these are introduced by the
buteverytime keyword (see LRM).

Programs written in DCL have a formatting close to that of a typical scripting language
such as Python. This means that instead of using classes and objects typical in Java,
DCL consists of various methods and at the end of the file a user can specify which
methods to call. In addition, DCL has access to a few C functions such as file I/O.

Background
Scripting languages are generally considered to be languages meant for writing code
generally expected to be only a few thousand lines of code on the high end. Some
examples of this include Python, AWK (co-created by former Columbia Professor Alfred
Aho), and Bash. While many scripting languages are built for a singular specific
purpose, many are created to be for general purpose use. DCL can be considered to
be a general-purpose language.

Chapter 2: Language Tutorial

Language Compilation

To get started with compiling and running DCL files, there is an initial setup process
one must go through. DCL’s compiler was written on a Docker Image using Ubuntu
15.10. For an easy installation, a user must first download Docker from https://
www.docker.com/community-edition Then, the user can clone the DCL repository from

https://www.docker.com/community-edition
https://www.docker.com/community-edition

 2

https://github.com/PLT-DCL/dcl. Once downloaded, the user should change directories
into the src using “cd src” to write any .dcl files they want to run. Then they should
change directories back to the docker folder by typing “cd .. && cd docker” into their
command line system. Once in the file, they should type “run [name of file].dcl.” This
will pull the DCL Docker image and then after compiling the compiler code, will run the
user’s file. The output will be displayed and visible from the user’s command line
system. Any changes made in the src directory within the docker container are reflected
outside the container and vice versa.

Using the Compiler
To run a file in DCL is quite easy when using the docker image. To explain this, an
example is provided below:

./dcl.native < float.dcl > float.ll
llc < float.ll > float.s
cc -o float float.s externalcalls.o -lm ./float

Chapter 3: Language Resource Manual

Introduction
DCL is an event-driven, non object-oriented language. The language is syntactically
similar to Java and compiles down to to LLVM. The benefit to using LLVM is that it will
allow DCL to include automatic garbage collection. DCL is a strongly typed
programming language. As a result, at compile time, the language will prevent runtime
errors based on variable type.

Lexical Conventions

Comments
DCL supports the comment style: /* comments */ for both one-line and multiline
comments. /* presents the beginning of a coment and */ terminates that comment. All
the content inside /*...*/ is treated as comments instead of part of the code that is
compiled.

Examples
/* this is a one-line comment */

https://github.com/PLT-DCL/dcl

 3

/* and now
 This is Multiline comment */

Identifiers
Identifiers are characters that can be used to name variables and functions in DCL.
Those characters can be alphabetic letters, decimal digits, and the underscore
character. The first character is not allowed to be a decimal digit. In DCL, uppercase
and lowercase letters are different, so var1 and var1 are considered two identifiers.
The identifiers used for variables and functions cannot be the same as the reserved
keywords, otherwise an error will be given.

Keywords

The following identifiers are reserved as keywords and cannot be used for variables
and functions, or any other purpose:

 buteverytime for while return int double void string else true false
print_line print read write # exp_int exp_dbl add_str

Constants
Constants are the fixed values that the program cannot alter during the execution.
They can be of any primitive data type defined in DCL, such as integer constants,
double constants, character constants. String constants are also included in DCL.

Integer Constant
An integer constant is a sequence of digits in decimal representation. Integer
representations using other bases are not supported in DCL. Integer constants
following a negation operator - are negative integers.  

Examples:
30 /* decimal number 30 */
-30 /* decimal number -30 */

Double Constant

A double constant represents a floating-point number and consists of integer part,
decimal point, fraction part, and exponent part. Both integer part and fraction part are
sequences of numbers. Exponent part includes e and the exponent. In DCL, either

 4

integer part or fraction part can be missing from a double constant, but they cannot be
missing at the same time; either decimal point or the exponent part can be missing,
but they cannot be missing together. Our definition is equivalent to that of the C
language, which defines them as:
 “A floating constant consists of an integer part, a decimal point, a fraction part,

an e or E, and an optionally signed integer exponent. The integer and fraction
parts both consist of a sequence of digits. Either the integer part, or the fraction
part (not both) may be missing; either the decimal point or the e and the
exponent (not both) may be missing.”

Examples:
30.5 /* floating-point number 30.5 */
-30.0 /* floating-point number -30.0 */
3.253 /* floating-point number 3.253 */
3253e-3 /* floating-point number 3.253*/
3253 /* floating point number 3253*/
.5 /* floating point still valid even if integer part is missing */
5. /* Allowed even if the fraction part is missing */

String Constant
String constants are sequences of characters enclosed in double quotes. If double
quotes need to be used in string constants, they need to be prefixed by a backslash.

“a” /* string a */
“ab” /* string ab */
“abc\”de” /* string abc”de */
“Hello! World” /* string Hello! World */

Types

Integer (int)
Integers in DCL are stored in 32 bits (4 bytes). Integers should be used in this language
when working with whole numbers (i.e., countable quantities). Integers can be any

values between -2,147,483,648 and 2,147,483,647.
An example of working with integers in the correct DCL syntax is as follows:

int <function_name>(int <parameters>) {
 <code placed here>

 5

return <int value>;
}

One-line example
int x = 1;

Double (double)
Doubles are 64 bits (8 bytes). Doubles should be used to store fractional numbers or
numbers too large to be saved into the integer primitive data type. All values will be
represented in binary so doubles may be approximated. They can range in value from
1e-37 to 1e37.

An example of working with doubles in the correct DCL syntax is as follows:

double <function_name>(double <parameters>) {
 <code placed here>

return <double value>;
}

One-line example:
double x = 1.0;

void
In DCL, the void type is for when a function returns nothing or an empty value after
being called. In this language, a void language will return null.
An example of working with the void type in the correct DCL syntax is as follows:

void <function_name>(<parameters>) {
 <code placed here>
}

Arrays

In DCL, arrays are a data structure that allows a programmer to store groupings of one
or more elements together in memory. For indexing an array, it begins at value 0 rather
than 1. In addition, arrays must group items of the same type. As such, if a programmer
tries to make a list of with different primitive data types, it will cause an error in the
code. Arrays of types void are not allowed and unchecked in DCL.

 6

To create an array, you need to specify the primitive data type for and the name of the
array.

Sample line for creating an empty array:
double[] purple;

Sample line for setting variables for an array:
purple = [3.0,4.0,5.0];

Casting
There is no syntax for casting in DCL at this time. This means that mixing types will
cause errors because it has not been supported in the current version of DCL. However,
to print a value, the user simply needs to call print if they wish to print without a
newline character and print_line to print a statement with a newline character at the
end. These print statements will print values of the same type and will return an error if
there are multiple types included in the print line.

To print, the user can call print or print_line and only supply one primitive data type
into the function.

Expressions and Operators

Expressions
Below is a list of expressions in DCL.
 • A literal value
 • Two operands separated by an operator
 • Accessing an array
 • Expression between ()  

For arithmetic expressions, they require at least one operand and zero or more
operators. Below are some examples of arithmetic expressions.
10; /* becomes an integer of value 10 (int 10) */
1700 + 89; /* becomes an integer of value 1789 (int 1789) */
1800.0 - 20.0 /* returns a double of 1780.0 (double 1780.0) */
100.0/20.0 /* returns a double 5.0 (double 5.0) */

In DCL, you can also use parentheses when trying to group multiple operands:

 7

(10 * (2+2) - (4*4)) /* expression evaluates to integer 24 */

Function Calls to Expressions
An expression is any call to a function that returns a value.

Example:
 print_line(“hello”); /* print_line is a void function and will return nothing*/

Array Access as Expressions
When a programmer creates an array in DCL, that array returns the type based on the
primitive data type passed to it. When indexed, it returns the appropriate value.

Example:
double[] myArray = [1.0, 2.0];
myArray{|0|}; /* evaluates to 1.0 */
An operator is an operation that is applied to operands. Depending on the operation,
the operator may need one or two operands.

Assignment Operators
Assignment operators store values into variables. In DCL, there are various ways to use
the assignment operator. For DCL’s syntax assignment is done through the “=”
operator. The rule for it is that the value on the right side of the operand is saved to the
operand on the left. DCL does not support the left operand to be a literal or constant
value.

Example:
int celie = 20;
double nettie = 16.5;
string plt = “We should have written this in Swift instead of OCaml”;
int PierreAndNatasha = 1800 + 12;
1 = 6 /* invalid */
“groundhogDay” = “greatCometof1812” /* invalid */

Arithmetic Operators
DCL offers the standard arithmetic operations featured in most modern programming
languages: addition, subtraction , multiplication, division, and negation.

 8

/* Addition */
int x = 1700 + 76;

For variables of type string, they also can be concatenated via the addition operator.
An example of this is the following:
string hello = “hello ”;
string world = “world”;
print_line(hello + world);

/* Subtraction */
double y = 33.0 - 19.0;

/* Multiplication */
int z = 6 * 6;

/* Division */
double w = 100/24

/* Negation */
int f = -10;

Type designation for mixed types occurs from left to right

Conditional Operators
In DCL, you can use the conditional operators to determine the relationship between
two operands. This includes checking if they’re equal and if one is greater or less than
the other. For booleans, users should just use 0 for false and 1 if true.
int x = 10;
int y = 3;
int test = (x==y) /* evaluates to 0 (false) */
int w = 4;
int q = 4;
int equal = (w==q) /*evaluates to 1 (true) */

It is important to note that in DCL, comparing float values will yield unexpected results
because of the underlying LLVM implementation. In other cases, users can use the
greater than, greater than or equal to, less than, and less than or equal to.

 9

string ghana = “1957”;
string random = “1957”;
int compared = (ghana == random) /* evaluates to true */
int x = 4;
int y = 3;
int z = x > 3 /* evaluates to 1 true */

The ==, !=, >=, >, <, <= operators are all defined to operate between any two values
both either being of int or double. The The ==, != are also designated to compare any
two given values in DCL, and if they are not both of type double, it will only return true
if the memory address is identical.
In DCL, you can use and (&&), or (||) , and not (!)).

Length Operator
DCL supports getting the length of both strings and arrays. This can be done by using
the hashtag (#) operator. Calling this operator returns an integer corresponding to the
size of the string or array. For strings, this is the number of characters in the string. For
arrays, this is the number of elements in the array. An example of using the length
operator can be found below:

string bodega = “store”;
int bodega_length = #bodega;
print_line(bodega_length); /* should print 5 */

Tilde Operator
DCL has a special tilde operator denoted with “~”. Tildes only work within
buteverytime blocks, which define a global callback as defined in the Callbacks section.
(In essence, the callback [the specified block of code] will be executed every time an
iteration occurs.) In short, the tilde operator allows the callback to access the old value
of the variable. Here’s an instructive example:

int i = 0 buteverytime (1) {
 print(~i);
 print(“ (has been updated to) ”);
 print(i);
};

 10

After every line, one can see the old value and new value of i. Tildes are supported on
variables of type string, array, int, and double. They are not supported on the void
type. For arrays, they can be used when checking a specific value in an array. Their
functionality is not defined on any other type not specified above.

Operator Precedence
When a given expression contains multiple operators, the operators are grouped based
on the rules of precedence. Below is the list from highest precedence to lowest.
 • Function calls, array subscripting, and membership access operator expressions.
 • Unary operators, including logical negation and unary negative.
 • When there are several unary operators that are in consecutive order, the later

ones are nested within the earlier operators. For instance, not-w translates not(-
w)

 • Multiplication and division
 • Addition and subtraction
 • Greater than, less than, greater than or equal to, less than or equal to
 • Expressions
 • Equal and not equal
 • AND expressions
 • OR expressions
 • All assignment expressions

Statements
A statement is the basic level of code hierarchy; this will become important later when
defining the concept of callbacks.

Expression Statements
An expression statement is just an expression with a semicolon, and the expression is
evaluated when the line of code is run. Examples are shown below:

/* Assignment Expression */
i = x + y;

/* Function Evaluation */
sayHello(“Don”);

 11

Declaration Statements
A declaration statement creates a new variable; you can choose to either provide the
initial value or take the initial default value by providing no value.

/* Provided Value */
int i = 13;

/* Default Value */
int i;

Control Flow Statements
DCL traditionally executes statements one after the other; control flow statements
extend this functionality by adding the possibility for certain blocks of code to either be
conditionally executed once or executed many times.

If/else statements

If/else statements allow a block of code to be executed or not depending on whether
the value of the condition evaluates to true. The structure is the condition, the block of
code to be executed when the condition is 1 (true), and optionally the block of code to
be executed when the condition is 0 (false).

/* Succeeding if condition */

if (1) {
 print_line(“Succeeds!”); /* “Succeeds” will be written to standard output */
}

/* Failing if condition */

if (0) {
 print_line(“Fails!”); /* “Fails” will not be written to standard output */
}

/* Conditional if/else execution */

if (condition) {
 print_line(“Condition was truthful”);
} else {

 12

 print_line(“Condition was false”);
}

In the last example, one of (but not both!) of the blocks of code will be run;
furthermore, the convention is that an otherwise clause gets assigned to the last
unmatched if/else statement.

for and while Statements
Both the for and while keywords exist to facilitate blocks of code to be executed
multiple times. The key difference is that for provides access to an index of the iteration
whereas while does not.

/* for example */
for(int i = 0; i < 10; i += 1) {
 print_line(i);
}

The initialization (here it is: int i = 0) takes place once before the loop block has
executed; the termination condition is evaluated every single time before the loop
block executes. Should the termination condition (here it is: i < 10) be true, the loop
will be terminated immediately. The loop block (here it is: print(i);) executes after the
termination condition is checked, and finally, the update (here it is: i += 1) is then
executed after the block is executed.

While statements are close to for statements; essentially, one only keeps the
termination condition and loop block. Consequently, all setup should occur before the
while statement, and updates should occur within the loop block.

/* while example */
int make_me_bigger = 3;
while (make_me_bigger <= 10) {
 make_me_bigger = make_me_bigger * 2;
}

Callbacks
The dynamic callbacks are the special and relatively unique part of DCL. Essentially, it
allows variables to have global sets of instructions that need to be executed depending

 13

on the state of themselves and other variables; these are introduced by the
buteverytime keyword. An example should prove useful.

int i = 0 buteverytime (i == 0) {
 print_line(“i can’t be zero, changing!”);
 i = 1;
}

This declaration statement defines a new variable i and also attaches a dynamic
callback to i. In essence, whenever i is used later in the program, the block of code with
the print and assignment statements will be executed if the value of i is 0. In this
example, the value of i will change immediately after the declaration statement finishes
because the condition for that clause is met.

More specifically, after each statement is executed, all callbacks will be checked and
those satisfying their conditions will be executed. (Callbacks cannot be nested within
each other.) This results in a powerful construct as demonstrated by the next example.
To do this, DCL automatically creates functions for the functions defined in a callback
prepending them with “__.” Normal functions are barred from being named with “__”
at the front to make this possible.

int i = 0 buteverytime (i < 10) {
 print_line(i);
 i = i + 1;
}

This set of code will print the integers from 0 to 9 separated by newline.

The buteverytime construct also introduces a new operator: the tilde (~). The ~ helps
with making more powerful buteverytime code chunks: it lets the source code track
changes to variables; essentially, the ~ operator gives the value of the variable before
the statement was executed. Here’s a slight twist on the second example.

int i = 0 buteverytime (i != ~i) {
 print_line(i);
 if (i < 10) {
 i = i + 1;
 }
}

 14

It is important to note that the initial value of a variable before it is defined is equal to
the default value for that type but is not equal to any other value. This reformulated
version achieves the exact same functionality as the second example.

Code Examples
/* Hello World in DCL */

int main() {
print_line(“Hello world!”);
return 0;
}

/* For loop in DCL */
for(int i = 0; i < 10; i = i + 1) {
 print_line(i);
}

/* Function definition in DCL */
double div(double x, double y) {
 if (y == 0) {

print_line(“denominator cannot be 0”);
return x;

 } else {
 return x / y;
 }
}

/* Variable a is initialized to be 5, but every time the value of a changes to 0, a warning
message is printed out because we don’t want variable a to be 0. */

int a = 5 buteverytime (a == 0) {
print_line(“a is 0 which is an illegal value for a”);

}

/* Variable i is initialized to be 0, but every time when the value of i changes and is not
equal to the original value assigned, the new value of i is printed out. */

int i = 0 buteverytime (i != ~i) {

 15

print_line(i);
}

/* a is initialized to a list with 6 items, but every time when the value of a[2] changes, a
message is printed out to deliver that information; also, when the length of a is
changed and is not equal to the original length, a message is printed out as well */

int[] a = [1, 7, 10, 5, 9, 8]
buteverytime (a[2] != ~a[2]) {

print_line(“the value of a[2] is changed”);
}
buteverytime (len(a) != ~len(a)) {

print_line(“the length of list a is changed”);
}

/* This for loop prints values 0 to 29 and 81 to 99 because we are using butfor to skip a
range of numbers that we don’t want our for loop to iterate through. */

for (int i = 0 buteverytime(i == 30) {i = i + 50;}; i < 100; i++) {
 print_line(i);
}

/* This function prints out the message “Hi Stephen Edwards” only once because we
are using buteverytime to actually change the increment variable x. */

int x = 0 buteverytime (x < 10) {
 print_line(“Hi Stephen Edwards”);
 x = x + 10;
 }
void printDrake() {

 while (x < 20) {
 x = x+1;
 }
}
Linear Regression written in DCL:

/* This function utilizes gradient descent to find optimal parameter values for the linear
regression problem with the given data. The usage of buteverytime is noteworthy here

 16

because it allows for variable changes to be coupled together; explicitly, both slope
and intercept change at the same time. The authors feel that this structuring of the
code makes more sense because all logic relating to particular variables is mostly near
the variable definition, which adds clarity. */

double dB1(double[] x, double[] y, double currentB0, double currentB1) {
double dB1 = 0;
for(int i = 0; i < len(x); i++) {
dB1 = dB1- 2 * (y{| i |} - currentB1 * x{| i |} - currentB0) * x{| i |};
 }
return dB1;
}
double dB0(double[] x, double[] y, double currentB0, double currentB1) {
double dB0 = 0;
for(int i = 0; i < len(x); i++) {
dB0 = dB0 - 2 * (y{| i |} - currentB1 * x{| i |}- currentB0);
 }
return dB0;
}
double cost(double[] x, double[] y, double currentB0, double currentB1) {
double cost = 0;
for(int i = 0; i < #x; i++) {
cost = cost + (y{| i |} - currentB1 * x{| i |}- currentB0) ^ 2;
 }
return cost;
}

double[] x = [1, 6, 3, 8];
double[] y = [2, 8, 5, 10];

double intercept = 0 buteverytime (~cost != cost) {
intercept = intercept - dB0(x, y, intercept, slope) * alpha
}
double slope = 1 buteverytime (~cost != cost) {
slope = slope - dB1(x, y, intercept, slope) * alpha
}
double alpha = 0.5;
double cost = 0.0 buteverytime (cost == 0 || (~cost - cost) / cost < 0.001)

 17

) < 0.001) {
stop = 1;
}
void main() {
int stop = 0;
while(!stop) {
cost = cost(x, y, intercept, slope);
}

print_line(“Slope: ” + slope);
print_line(“Intercept: ” + intercept);
}

Bee Movie Example:
This program takes in the bee movie script and replaces every instance of the word
“bee” (or Bee) and replaces it with " b + + “:

/* Bee Movie but every time they say "bee"... */

string[] split(string whole, string sep) {
 int number_of_parts = 0;
 int looking_for_parts = 0;
 int index;
 for(index = 0; index < #whole; index = index + 1) {
 if(whole{| index |} == sep) {
 if(looking_for_parts) {
 looking_for_parts = 0;
 }
 } else {
 if(!looking_for_parts) {
 number_of_parts = number_of_parts + 1;
 looking_for_parts = 1;
 }
 }
 }
 string[] parts = [number_of_parts of ""];
 int current_index = 0;

 18

 looking_for_parts = 0;
 string current = "";
 for(index = 0; index < #whole; index = index + 1) {
 if(whole{| index |} == sep) {
 if(looking_for_parts) {
 looking_for_parts = 0;
 parts[current_index] = current;
 current_index = current_index + 1;
 current = "";
 }
 } else {
 if(!looking_for_parts) {
 looking_for_parts = 1;
 }
 current = current + whole{| index |};
 }
 }
 parts[current_index] = current;
 return parts;
}

string join(string[] parts, string sep) {
 string total = "";
 for(int part = 0; part < #parts; part = part + 1) {
 total = total + parts{| part |} + sep;
 }
 return total;
}

int starts_with(string haystack) {
 return (haystack{| 0 |} == 'b' || haystack{| 0 |} == 'B') &&
 haystack{| 1 |} == 'e' && haystack{| 2 |} == 'e';
}

string current_word = "" buteverytime (starts_with(current_word)) {
 current_word = " b + + ";
}

 19

void main() {
 string bee_movie_script = read("bee_movie_script.txt");

 string[] bee_movie_words = split(bee_movie_script, " ");
 string[] modified_bee_movie_words = [#bee_movie_words of ""];

 for(int i = 0; i < #bee_movie_words; i = i + 1) {
 current_word = bee_movie_words{|i|};
 modified_bee_movie_words[i] = current_word;
 }

 write("b++_movie_script.txt", join(modified_bee_movie_words, " "));
}

Language Grammar
We have included the full grammar of a DCL program below:
%{
open Ast
%}

/* Ocamlyacc parser for DCL */
%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA
%token PLUS MINUS TIMES DIVIDE EXPONT ASSIGN NOT TILDE
%token EQ NEQ LT LEQ GT GEQ TRUE FALSE AND OR DOUBLE STRING
BUTEVERYTIME
%token RETURN IF ELSE FOR WHILE INT BOOL VOID LINDEX RINDEX
%token LSQUARE RSQUARE OF LENGTH
%token <int> INTLITERAL
%token <float> DBLLITERAL
%token <string> STRLITERAL
%token <string> ID
%token EOF

%nonassoc NOELSE
%nonassoc ELSE
%right ASSIGN
%left OR

 20

%left AND
%left EQ NEQ
%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE
%right EXPONT
%right NOT NEG LENGTH
%left LINDEX

%start program
%type <Ast.program> program

%%

program:
 decls EOF { $1 }

decls:
 /* nothing */ { [], [] }
 | decls globalstmt { ($2 :: fst $1), snd $1 }
 | decls bdecl { fst $2 :: fst $1, (snd $2 :: snd $1) }
 | decls fdecl { fst $1, ($2 :: snd $1) }

fdecl:
 typ ID LPAREN formals_opt RPAREN LBRACE stmt_list RBRACE
 { { typ = $1;
 fname = $2;
 formals = $4;
 body = List.rev $7 } }

bdecl:
 typ ID ASSIGN expr BUTEVERYTIME LPAREN expr RPAREN LBRACE stmt_list
RBRACE
 { (GlobalAssign($1, $2, $4), { typ = $1;
 fname = "__" ^ $2;
 formals = [($1, $2) ; ($1, "~" ^ $2)];
 body = let full_stmt_list = (List.rev $10) @ [Return (Id($2))] in

 21

 [If($7, Block(full_stmt_list), Return (Id($2)))] (*(Id($2))*)
 })
 }

formals_opt:
 /* nothing */ { [] }
 | formal_list { List.rev $1 }

formal_list:
 typ ID { [($1,$2)] }
 | formal_list COMMA typ ID { ($3,$4) :: $1 }

dtyp:
 INT { Int }
 | DOUBLE { Double }
 | STRING { String }

dim_list:
 LSQUARE RSQUARE { 1 }
 | LSQUARE RSQUARE dim_list { 1 + $3 }

atyp:
 dtyp dim_list { Array($1, $2) }

typ:
 dtyp { Simple($1) }
 | VOID { Void }
 | atyp { $1 }

globalstmt_list:
 /* nothing */ { [] }
 | globalstmt_list globalstmt { $2 :: $1 }

stmt_list:
 /* nothing */ { [] }
 | stmt_list stmt { $2 :: $1 }

 22

stmt:
 expr SEMI { Expr $1 }
 | RETURN SEMI { Return Noexpr }
 | RETURN expr SEMI { Return $2 }
 | LBRACE stmt_list RBRACE { Block(List.rev $2) }
 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }
 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
 | FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN stmt
 { For($3, $5, $7, $9) }
 | WHILE LPAREN expr RPAREN stmt { While($3, $5) }
 | typ ID SEMI {Local($1, $2)}

globalstmt:
 typ ID SEMI { Global($1, $2) }
 | typ ID ASSIGN expr SEMI { GlobalAssign($1, $2, $4) }

expr_opt:
 /* nothing */ { Noexpr }
 | expr { $1 }

index:
 LINDEX expr RINDEX { $2 }

val_list:
 expr { [$1] }
 | expr COMMA val_list { [$1] @ $3 }

simple_arr_literal:
 LSQUARE val_list RSQUARE { $2 }

expr:
 INTLITERAL { IntLiteral($1) }
 | DBLLITERAL { DblLiteral($1) }
 | STRLITERAL { StrLiteral($1) }
 | simple_arr_literal { ArrLiteral($1) }
 | TILDE ID { TildeOp($2) }
 | ID { Id($1) }
 | expr PLUS expr { Binop($1, Add, $3) }

 23

 | expr MINUS expr { Binop($1, Sub, $3) }
 | expr TIMES expr { Binop($1, Mult, $3) }
 | expr DIVIDE expr { Binop($1, Div, $3) }
 | expr EXPONT expr { Binop($1, Exp, $3) }
 | expr EQ expr { Binop($1, Equal, $3) }
 | expr NEQ expr { Binop($1, Neq, $3) }
 | expr LT expr { Binop($1, Less, $3) }
 | expr LEQ expr { Binop($1, Leq, $3) }
 | expr GT expr { Binop($1, Greater, $3) }
 | expr GEQ expr { Binop($1, Geq, $3) }
 | expr AND expr { Binop($1, And, $3) }
 | expr OR expr { Binop($1, Or, $3) }
 | MINUS expr %prec NEG { Unop(Neg, $2) }
 | NOT expr { Unop(Not, $2) }
 | LENGTH expr { Unop(Length, $2) }
 | ID ASSIGN expr { Assign($1, $3) }
 | ID LPAREN actuals_opt RPAREN { Call($1, $3) }
 | LSQUARE expr OF expr RSQUARE { DefaultArrLiteral($2, $4) }
 | ID LSQUARE expr RSQUARE ASSIGN expr { ArrayAssign($1, [$3], $6) }
 | expr index { Index($1, [$2]) }
 /* | ID index ASSIGN expr { Assign(Index(Id($1), $2), $4) } */
 | LPAREN expr RPAREN { $2 }
 | typ ID ASSIGN expr {LocalAssign($1, $2, $4)}

actuals_opt:
 /* nothing */ { [] }
 | actuals_list { List.rev $1 }

actuals_list:
 expr { [$1] }
 | actuals_list COMMA expr { $3 :: $1 }

Standard Utilities
To help users make useful tools through DCL, we have built out a standard utilities to
support users in doing more in our language.

 24

read
read allows a user to read in a file into a string. The function will return a string of the
entire file or will quit if there is an issue opening the file.

/* open a file and have result returned as a string */
string beemovie = read(“beemovie.txt”);

write
write allows the user to write to a file. To use this function, the user must provide a
string containing the text they want to output as well as the name of the file to output
to.
/* writes the string beemovie to beemovie.txt */
string beemovie = “According to all known laws of aviation….”;
write(beemovie, “beemovie.txt”);

Chapter 4: Project Plan

Project Planning
In order to complete this project on time, our team followed the Agile methodology
through the Scrum process. This meant that we worked iteratively and made sure to
keep a master branch that could be run at anytime. This meant each of our iterations
was shippable, deployable code--albeit not the full end product we wanted. We also
had two members of our team meet with Professor Edwards to discuss our callback
system and the best ways to implement it. Below, we have included an example of
what our Trello Board for dealing with product to-dos looked like.

 25

Specification Process
When we first started this project, we knew we wanted the language to be cross-
platform. Since members of our group use different computers and different operating
systems, this was a main goal because then we could all ultimately use this language.
This meant that we needed to write the language such that it compiled down to LLVM
IR since this was the easiest way to achieve this overarching goal.

After deciding on this standard, we began brainstorming what we wanted to make this
language centered around. Since many of us did not rely on object-oriented
programming for most of our general uses, we settled on a scripting language that
offered a new system offered callbacks. With callbacks, we figured we would be able to
make a base language that was quite useful as well as a new format that required using
less if statements and was even easier to read. Once we decided on this, we were
quickly able to come up with our name: Dynamic Callback Language (DCL).

Development Process
To ensure on-time delivery of this project, we stuck to the main course deadlines and
advice from our TA. We began by working on the scanner and parser to help with
planning our LRM. Afterwards, we began to work on our semant file followed by the
AST file and finally codegen. As feature plans changed as well as specifications, we
went back through the old files and updated them as necessarily to be in line with our
language. In addition, for some features we leveraged pair programming. This was
immensely helpful to avoid people getting stuck and to speed up the pace at which we
implemented features.

Testing Process

Creating DCL required a lot of testing and documenting. When we began adding new
features, we focused on writing out sample programs that we could later use to test if
the new feature was working correctly.

When it came to debugging code, we would try to log how we tried to debug a
problem either in a shared note or by writing comments in the code we shared. This
was useful for speeding up debugging later on because we could look back at past
problems other team members faced and how they resolved them.

 26

Team Responsibilities
Every member of the team played an active role in creating this language. To
effectively accomplish this, we each took on more than just our assigned titles. The
table below shows what each member focused on, but in the end the entire team
mostly worked on all parts of this project.

GitHub

Due to the scope of this project and the need to keep track of updates to the
language, we used Git version control system on GitHub. We worked on the language
from the following Github accounts:
● Ashutosh Nanda - ashutoshnanda
● Chang Liu - cl3403
● Craig Rhodes - CraigRhodes
● William Essilfie - wessilfie

Project Log

Thanks to the nifty analytics tools provided by GitHub, we were able to track our
commit history across the entire project.

Looking at this, we can see our commits rise quickly as we near the end of a sprint and
as we started adding our bigger language features near the end of the semester. In
addition, every member of the team played an active role in development throughout
all the stages.

Team Member Responsibilities

Ashutosh Nanda Doubles, Arrays, Codegen, Parser

Chang Liu Test Suite, Strings, Parser, Codegen, Semant

Craig Rhodes Callbacks, Circle CI, Docker, AST, LRM

William Essilfie Scanner, Parser, Test Suite, Semant, Final Report

 27

Git Commit History
commit 953acb7f4a7cce0c80045bf714c6afaac16ffa65
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 19:29:06 2017 -0400

 Updated Makefile to not clean everytime

commit 6ef0cf8cd530c892a5a7f6cdbd799534b8314c80
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Wed May 10 18:37:22 2017 -0400

 Change name of exponentiation functions

commit e4510b2164b010f89071770ab3ce7dbb2a76291c
Merge: 49d585c d54b47f
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 18:25:19 2017 -0400

 Merge branch 'master' of https://github.com/PLT-DCL/dcl

commit 49d585cb1390e2fb9383da01bf499ccaadd2c90b
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 18:25:16 2017 -0400

 Fixed tests

commit d54b47f82fdc08e08ca02786dd9f4e052ae31643

 28

Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Wed May 10 18:14:08 2017 -0400

 Cleaning up master

commit 42b229eab5690f00c725407d1e5297b9f0ac1d72
Merge: cedcc80 5432298
Author: Chang Liu <cl3403@columbia.edu>
Date: Wed May 10 17:20:17 2017 -0400

 Merge branch 'master' of https://github.com/PLT-DCL/dcl

commit cedcc80a1fc2910835325421984b7545901cef4c
Merge: 6827587 7e49764
Author: Chang Liu <cl3403@columbia.edu>
Date: Wed May 10 17:19:22 2017 -0400

 combining all test cases

commit 543229828ff882c43010e12c81c203e75c559b40
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 17:17:18 2017 -0400

 Modified CI files

commit c1c3c377b95e95be7f0890de2a63b9e38f938f3b
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 17:13:16 2017 -0400

 Modified CI files

commit b815e35703e0f41967d60ad885d20b8c843c36df
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 17:05:00 2017 -0400

 Modified CI files

commit 527da1916fef7f0a09facdd91aa5a5dc4890dd3e

 29

Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 16:56:59 2017 -0400

 Modified CI files

commit 7e49764e028b0ed91c77f0682a5c3c539f0896ef
Merge: 5cb1c0d 666c24e
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 16:52:44 2017 -0400

 Resolved merge conflicts from arrays-and-callbacks

commit 666c24ee7d3a923bcb160e3aa14fb39a8166dce8
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Wed May 10 16:48:16 2017 -0400

 Figured out why multi-statement function can't be called in buteverytime condition

 Basically, you would end up triggering the buteverytime condition on every line of
the function, so you'd eventually segfault.. It's a feature!

commit 682758737267ae3979bde8cc5a86e722bd69c93e
Author: Chang Liu <cl3403@columbia.edu>
Date: Wed May 10 16:40:55 2017 -0400

 adding callbacks test cases

commit 50c4bcb80d9612710a37aeca35e18d4c4b83e141
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Wed May 10 16:32:37 2017 -0400

 Fixed tilde bug

commit 5cb1c0d555454672e5b2206222e0b5aa31b08b15
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 14:50:46 2017 -0400

 Updated circle.yml

 30

commit 3308960c418898ebf79a66933a2d34c5f926e362
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 14:47:26 2017 -0400

 Updated circle.yml

commit a85bfc4e1089b6e45014bf95d09e049570977bd0
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 14:46:18 2017 -0400

 Updated circle.yml

commit f89a9d6a1b5faa1767ae62741e79b1c052de7b58
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 14:43:11 2017 -0400

 Updated circle.yml

commit 72554d7026a896567925f60eccda1b3cd22dd073
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Wed May 10 14:39:09 2017 -0400

 DEMO

commit e8c8a8fdb1048d37d597665c7afdfe04f4889048
Merge: 9f2c656 39185ee
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 14:30:24 2017 -0400

 Merge branch 'arrays-and-callbacks' of https://github.com/PLT-DCL/dcl into arrays-
and-callbacks

commit 9f2c6560700640019ca085edb7f5edf6f7d1467d
Merge: a2a0b94 5225d56
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 14:28:59 2017 -0400

 31

 Merge branch 'arrays-and-callbacks' of https://github.com/PLT-DCL/dcl into arrays-
and-callbacks

commit 5225d5632f9d9fd90685e25cab3311a45307c395
Author: Chang Liu <cl3403@columbia.edu>
Date: Wed May 10 14:17:23 2017 -0400

 fixing all test cases

commit 39185ee196c1c21b48b34296d1237effee543d37
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Wed May 10 13:26:38 2017 -0400

 Fixed the way value is passed into callback

commit a2a0b94003d02070496a84797c266bf180bcb0ca
Merge: cb79e9e 4ddf282
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 13:02:31 2017 -0400

 Merge branch 'arrays-and-callbacks' of https://github.com/PLT-DCL/dcl into arrays-
and-callbacks

commit 4ddf2825c53f432ef75d4f8bd84145ed08547b22
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Wed May 10 13:01:44 2017 -0400

 Global assignment works

commit cb79e9e907139627bf512ea408310036e9545dd6
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 11:02:35 2017 -0400

 Updated codegen.ml with tilde operator currently set to track the value of the
variable it's mirroring

commit 9161402ece0e4700dd28f8d0b0a02073db1b38b4
Author: Craig Rhodes <cdr2139@columbia.edu>

 32

Date: Wed May 10 02:55:05 2017 -0400

 Fixed an edge case of the read function

commit 56977da2a9a87057203bfd74a7e4fe0e8d2943d3
Merge: 1b68ba8 ab886cb
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 02:27:25 2017 -0400

 Merged in new code relevant to tilde

commit 1b68ba8b2b8a1020a0804a22f8bc9308a18e5e2f
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Wed May 10 02:24:14 2017 -0400

 Added tilde operator

commit ab886cbe8b4f43555c87d34a80d2ffc05113fa31
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Wed May 10 01:53:19 2017 -0400

 File I/O changes

commit cc348e8157911131764e46befde87fdfbd4a5de6
Author: Chang Liu <cl3403@columbia.edu>
Date: Tue May 9 22:25:32 2017 -0400

 adjusted the error msg

commit 44566c83889a3ec2c52d4bc8798129135c125853
Author: Chang Liu <cl3403@columbia.edu>
Date: Tue May 9 22:25:05 2017 -0400

 fixed a parsing error

commit 9488860161c9e6fd2794d0fa35208770aa9ad111
Author: Chang Liu <cl3403@columbia.edu>
Date: Tue May 9 22:19:49 2017 -0400

 33

 adjusted the test cases

commit d0156a590aafecf41b35835151cc538cf58e7933
Author: Chang Liu <cl3403@columbia.edu>
Date: Tue May 9 22:19:02 2017 -0400

 fixed the error msg

commit ade8fae68a16d7d103d039751d5b9337d48a0f96
Author: Chang Liu <cl3403@columbia.edu>
Date: Tue May 9 22:18:47 2017 -0400

 fixed the error msg

commit f4984c2b07148b8968993631fb442083dff13d9c
Author: Chang Liu <cl3403@columbia.edu>
Date: Tue May 9 22:17:19 2017 -0400

 fixed duplicate formals bug

commit f7714cf0e6be07939f2719bf7c75be1431e71beb
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Tue May 9 20:37:35 2017 -0400

 Updated Makefile to correctly link to object file again

commit f224026b3d264caecec84f75c5c94a1e4d22066a
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Tue May 9 19:23:39 2017 -0400

 Updated Makefile to be less verbose

commit a510247776657cd7a8cc168ae1ffc5767fe33d76
Merge: 3b05fda 25c3938
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Tue May 9 18:56:16 2017 -0400

 34

 Merge branch 'arrays-and-callbacks' of https://github.com/PLT-DCL/dcl into arrays-
and-callbacks

commit 3b05fda4b70ca40f699048d165819792f4a99b02
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Tue May 9 18:55:38 2017 -0400

 Updated tests with new print_line function

commit 25c3938dff0f2191c6c4e0cd3543e666a13677d3
Author: Chang Liu <cl3403@columbia.edu>
Date: Tue May 9 18:43:53 2017 -0400

 make global strings work

commit 1d792f99dc7fb0ff8e9faade2efc7cd4e60226e7
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Tue May 9 17:41:20 2017 -0400

 Updated strcmp function to not try to use addstr

commit 9ca06546e54e343ee028b7ed4451ff695a1a0446
Merge: 25ce4c1 c902652
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sun May 7 21:07:10 2017 -0400

 Merged arrays into master

commit 25ce4c19f80461451ce12c26d40dcf9f7ada65a9
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sun May 7 18:54:44 2017 -0400

 Made callbacks work for all callbacks and not just a single one

commit f1004d879dbe5c6cf72f7782f7954339ebe1db93
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sun May 7 16:37:55 2017 -0400

 35

 Callbacks now work again

commit c90265293ae94a4df2cacf701cb0555076a36e84
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Sun May 7 15:33:03 2017 -0400

 Full Array + String Functionality

commit 8d9331f6fc63272f8a5a85f38673b9f390edc143
Author: Chang Liu <cl3403@columbia.edu>
Date: Sun May 7 14:48:46 2017 -0400

 using llvm build and store again

commit 2681ba4e0c65bfc1705c3d17350228e024a61e5e
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sat May 6 22:08:28 2017 -0400

 Passing in an actual as an argument to callbacks, retrieved from hastable in codegen

commit 211ce5b14c022425723994e2fb1489195fbec59c
Merge: e410a37 9c384e5
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sat May 6 19:59:52 2017 -0400

 resolved merge conflicts with upstream

commit e410a37748472fcd8e58f9f0e69d62aa889d12ea
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sat May 6 19:58:40 2017 -0400

 Updated buteverytime statements to take in a formal for the locally defined value
defining the declaration

commit 9c384e5c3d644552b04e4db66ea1fba0d8e0c8d5
Author: Chang Liu <cl3403@columbia.edu>
Date: Sat May 6 19:57:29 2017 -0400

 36

 now global assignment happens globally

commit 45c8b7779f3ea8be7480509d8934facb782d028f
Author: Chang Liu <cl3403@columbia.edu>
Date: Sat May 6 01:56:03 2017 -0400

 hopefully please fix the callback issue

commit 50f0be9f644e7cddf7493ec792019d08b93fac3b
Merge: 65e426b dccdcf9
Author: Chang Liu <cl3403@columbia.edu>
Date: Sat May 6 01:55:05 2017 -0400

 Merge branch 'standard-library' of https://github.com/PLT-DCL/dcl into standard-
library

commit 65e426bc81c7976780fee0ca77b038a275b9c863
Author: Chang Liu <cl3403@columbia.edu>
Date: Sat May 6 01:53:34 2017 -0400

 hopefully fixing the callback bug

commit dccdcf9bd2f2975d593eccb883829f120abfc46f
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sat May 6 01:37:52 2017 -0400

 Added test dcl file for callbacks

commit 028ca905c05fc0f5dd0965e06fa4fc424747e193
Merge: 4719943 d8c0d31
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sat May 6 01:36:23 2017 -0400

 Merge branch 'standard-library' of https://github.com/PLT-DCL/dcl into standard-
library

commit d8c0d319aa2f76d2c57f731a09a289b848778f31
Author: Chang Liu <cl3403@columbia.edu>

 37

Date: Sat May 6 01:36:08 2017 -0400

 potentially solving callback bug

commit 4719943035f581f911c5b80268fa4c254d18be28
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sat May 6 01:22:32 2017 -0400

 Modified parser to use GlobalAssign for bdecl variable

commit eac152a83c8915d124342a5543312830cf02770e
Merge: bb9bce3 e3c1acb
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sat May 6 00:10:26 2017 -0400

 Merged in recent changes for standard-library

commit e3c1acbc21cf21dabbe46f7964379ab89618b56d
Author: Chang Liu <cl3403@columbia.edu>
Date: Fri May 5 23:45:54 2017 -0400

 fixed a bug with checking global duplicates

commit 7eed8102f5928afbb3b1910f1a37e4b44abc7316
Author: Chang Liu <cl3403@columbia.edu>
Date: Fri May 5 23:00:58 2017 -0400

 now semant checks for local and global duplicates

commit bb9bce395093cb28794e91a280bc36c82f5a3a4d
Author: Chang Liu <cl3403@columbia.edu>
Date: Fri May 5 03:21:20 2017 -0400

 now global variable assignment works

commit b2d9e1a528d1345dc1a4f4d612a914159fda9ce8
Author: Chang Liu <cl3403@columbia.edu>
Date: Thu May 4 23:10:28 2017 -0400

 38

 fixed bugs for this test file

commit f49de5685de7698bf228ff3a776f473a7bc77502
Author: Chang Liu <cl3403@columbia.edu>
Date: Thu May 4 22:28:25 2017 -0400

 debuging Makefile and test files

commit d8a5a30ae8dbb9a2742518e3a2fb1a7121896a5b
Author: Will Essilfie <wke2102@columbia.edu>
Date: Thu May 4 21:49:42 2017 -0400

 working on fixing testing

commit eb629ac11dd7f7f1af0c4ee74d79a33d5dd49802
Merge: f69b630 fb01de9
Author: Craig D. Rhodes III <cdr2139@columbia.edu>
Date: Fri May 5 11:56:45 2017 -0400

 Merge pull request #14 from PLT-DCL/callbacks

 Callbacks

commit fb01de9ae78b522ae1bcae2c1b958aa9ad527104
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Fri May 5 03:50:58 2017 -0400

 Callbacks are now generated between every function call and are not generated
inside callbacks

commit 0563f7a0aac7b3eb21aa81fa40041aae42b9cbaa
Author: Chang Liu <cl3403@columbia.edu>
Date: Fri May 5 03:21:20 2017 -0400

 now global variable assignment works

commit 4b01b15ec180ca9c3ed369abb1e275c35b5513c9

 39

Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Fri May 5 00:16:36 2017 -0400

 Updated bdecl to declare buteverytime variable globally

commit 2dabc2f87d16b5e49858bb774821e3b60864d6b0
Author: Chang Liu <cl3403@columbia.edu>
Date: Thu May 4 23:10:28 2017 -0400

 fixed bugs for this test file

commit 77d80046206fcc2b7914fbd9c5b8f1d54a770154
Author: Chang Liu <cl3403@columbia.edu>
Date: Thu May 4 22:28:25 2017 -0400

 debuging Makefile and test files

commit bcf0719fdaa7ef7652c92ec871bdebb94be3bb79
Author: Will Essilfie <wke2102@columbia.edu>
Date: Thu May 4 21:49:42 2017 -0400

 working on fixing testing

commit 2e59796ff00f20f1c0259af5355783942f002f9f
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Thu May 4 21:08:38 2017 -0400

 Updated parser to store bdecls properly

commit 0eb3379ac0686b3d20ff53f96984d112e56998e8
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Thu May 4 20:57:14 2017 -0400

 Updated parser to recognize buteverytime again

commit f69b63097e497bce8daa8ea4a80063f03136cfb7
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Thu May 4 20:00:43 2017 -0400

 40

 Removed locals from bdecl in parser

commit 16b6a3a90201434469af4dbe6fd95e72b5162a5e
Merge: ae9eb16 490bd15
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Thu May 4 19:57:37 2017 -0400

 Merging standard library functions

commit ae9eb166a91525fa2b50fec338b5140501f8afaf
Merge: f68f186 77cfe17
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Thu May 4 19:50:17 2017 -0400

 Fixed merge conflict with buteverytime

commit 490bd158041b8d0912bcc71029ec82097dc0a9c7
Author: Chang Liu <cl3403@columbia.edu>
Date: Wed May 3 22:45:43 2017 -0400

 test file for FILE I/O

commit 60cf221ec5da06c94e75bcef1b3cbc48848d5eaf
Author: Will Essilfie <wke2102@columbia.edu>
Date: Wed May 3 21:30:53 2017 -0400

 debugging file i/o

commit 99a113ee7dffbbffa474d790c7309b06b514ea49
Author: Will Essilfie <wke2102@columbia.edu>
Date: Wed May 3 19:32:47 2017 -0400

 Adding basic standard library and merging c calls into one file

commit f68f18644a96089d6253758898dbedaad704d641
Merge: 532ec3f 979f576
Author: William Essilfie <wke2102@columbia.edu>

 41

Date: Wed May 3 18:22:35 2017 -0400

 Merge pull request #13 from PLT-DCL/variable

 Making variable branch the master branch

commit 77cfe17946c73d07781d7c94d20d595a15cfeca2
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Tue May 2 00:02:55 2017 -0400

 Added buteverytime functionality

commit 979f576d40cc4238fd089c36b8d8935a4ee31a94
Author: Chang Liu <cl3403@columbia.edu>
Date: Sun Apr 30 22:04:05 2017 -0400

 made variable declarations & assignment work

commit 532ec3fd61bf2ede0984d9c8e1766fd41ade347f
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sun Apr 30 22:00:44 2017 -0400

 adding more array focused test files

commit 9c4fba0579bfeaee356ece647170f05c76c6c565
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sun Apr 30 20:02:59 2017 -0400

 fixing failing test cases (func4)

commit cfe898d993a842d770446df82ae9b1503360df3f
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sun Apr 30 19:58:38 2017 -0400

 adding new test cases

commit e7026065fc47d5999150753453b5e41274972c73
Author: Will Essilfie <wke2102@columbia.edu>

 42

Date: Sun Apr 30 17:36:59 2017 -0400

 removing printbig test

commit d64fdffde7b353b457a04ad72ae0d4e1c4f0e58f
Author: William Essilfie <wke2102@columbia.edu>
Date: Sun Apr 23 01:32:45 2017 -0400

 updating README.md

commit 824a8fe0e7638f16a4e748cb773bf6139048ada7
Author: William Essilfie <wke2102@columbia.edu>
Date: Sun Apr 23 01:31:55 2017 -0400

 make README a README.md

commit e0a0b697cbd5ffbbf1b89553ceed47dbdc1175fa
Merge: 0002067 719d500
Author: Chang Liu <cl3403@columbia.edu>
Date: Sat Apr 22 12:19:20 2017 -0400

 Merge branch 'adding-arrays' of https://github.com/PLT-DCL/dcl into adding-arrays

commit 9781f6e81a8844c50744a0e038c096ee0a1baf8e
Author: Craig D. Rhodes III <cdr2139@columbia.edu>
Date: Sat Apr 22 12:12:28 2017 -0400

 Update README.md

commit 573f780e5a81e8a675476a26bc512eaf7168d083
Author: Craig D. Rhodes III <cdr2139@columbia.edu>
Date: Sat Apr 22 12:12:16 2017 -0400

 Update README.md

commit 719d500c1289a67e2fbb43e30dee77aa284ee830
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sat Apr 15 15:55:58 2017 -0400

 43

 Fast-forwarded adding-arrays to new master

commit 6c6eb1dbd3c874940fd083984ad3bdfb92ec8b7e
Merge: 737ca08 012e3d6
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sat Apr 15 15:53:24 2017 -0400

 Merge adding-arrays

commit 012e3d6e1389734c4242c5271c3e650a3dd44dfc
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sat Apr 15 15:52:09 2017 -0400

 Removed _build directory

commit 8bd0e2cb570ff21f68cbe76c104bf85c6335eca0
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 15:42:32 2017 -0400

 adding string as global variable

commit 7191f6e1fc91d4c9a5946200d6b2c5d4b7cf0a04
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 15:06:30 2017 -0400

 working on print_double

commit 00020671cd77517b9189ba463560e170787709e2
Merge: 4f2666a a66fbb6
Author: Chang Liu <cl3403@columbia.edu>
Date: Sat Apr 15 14:56:46 2017 -0400

 Merge branch 'adding-arrays' of https://github.com/PLT-DCL/dcl into adding-arrays

commit 4f2666a833681c0c4af90cec4c7a16290b99059c
Merge: 1572fe0 1c71dd7
Author: Chang Liu <cl3403@columbia.edu>

 44

Date: Sat Apr 15 14:55:55 2017 -0400

 Merge branch 'adding-arrays' of https://github.com/PLT-DCL/dcl into adding-arrays

commit a66fbb608ff92d8ddca7a931ef11f2a842c2f1c8
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 14:55:52 2017 -0400

 adding bool

commit 1c71dd795c74cb2972aa9a2bd6cfbef5e5afd21d
Author: Chang <cl3403@columbia.edu>
Date: Sat Apr 15 13:48:57 2017 -0400

 changing .mc to .dcl

commit 1572fe0324cadf5c9b8b31c12062393ae4e3145e
Author: Chang Liu <cl3403@columbia.edu>
Date: Sat Apr 15 13:45:49 2017 -0400

 changing .mc to .dcl

commit 1d7cd52cc02d4c1f4b56397ef83559da8fcadb29
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 13:38:53 2017 -0400

 fixing if5 test

commit b39469541f4fafc755a09deae10052b089e81360
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 13:38:08 2017 -0400

 fixing if1 test

commit acd5745345b9aa787d98b8557a11206c7c25ef89
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 13:31:04 2017 -0400

 45

 remove square

commit 916fbc948371900fcd20aab9ce596c5d2fa4a8e0
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 13:30:14 2017 -0400

 some removals

commit 5c5f6856cc4c496d02714f32aa084d6c7bd557aa
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 13:28:54 2017 -0400

 removing array

commit e14d846a9d7209f40ee449367f717a7c619b6f9e
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 13:26:50 2017 -0400

 removing some array stuff

commit d6e06f20c5739e45a39e386fe9ce42b40f8f2549
Merge: 5beb782 9c726a1
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 13:22:28 2017 -0400

 Merge branch 'bool' of https://github.com/PLT-DCL/dcl into adding-arrays

commit 5beb782e6767bc3a306e01a1beee7acd876833c4
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 13:21:14 2017 -0400

 Updating test suite

commit 9c726a155ed85eee4c4a29d2b5436909b3f9d8e3
Author: Chang <cl3403@columbia.edu>
Date: Sat Apr 15 13:16:09 2017 -0400

 Change "Boolean" to "Bool"

 46

commit 259e0abbb06ee03098a533da359d50cd011bdf08
Author: Chang <cl3403@columbia.edu>
Date: Sat Apr 15 13:14:00 2017 -0400

 Change "Boolean" to "Bool"

commit ab254d4855fb8a35057dfddca9fd8cbc90c13c36
Author: Chang <cl3403@columbia.edu>
Date: Sat Apr 15 13:12:35 2017 -0400

 Change "Boolean" to "Bool"

commit b56bd94adef581b5335b279eb728451c1a9391f2
Merge: 61488d6 d12f83f
Author: Will Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 13:02:12 2017 -0400

 Merge branch 'bool' of https://github.com/PLT-DCL/dcl into adding-arrays

commit d12f83f387227e971ffda4483e523a9a2c1a207d
Author: William Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 13:00:42 2017 -0400

 update test-add

commit 1f6bd1c376882d54a7857c04a70503bd4886dfc2
Author: William Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 12:59:21 2017 -0400

 updating to print_int

commit 293101cfad56a933966790da83924bbd3f3fb1e2
Author: William Essilfie <wke2102@columbia.edu>
Date: Sat Apr 15 12:25:31 2017 -0400

 fixing bool issues

 47

commit 61488d6fadb98a3c998d152fafb8cfc320d3dac2
Author: Will Essilfie <wke2102@columbia.edu>
Date: Thu Apr 13 20:13:48 2017 -0400

 starting work on adding arrays

commit ab460ca89964ee89f2111d5d4facae5d801c0911
Author: Will Essilfie <wke2102@columbia.edu>
Date: Thu Apr 13 16:24:49 2017 -0400

 adding bool back to DCL

commit 17d17527c2789839f91bc601f97e40b881ac3408
Author: Chang Liu <cl3403@columbia.edu>
Date: Wed Apr 12 22:12:40 2017 -0400

 added bool back to codegen.ml in this new branch

commit 4c8474739da774da90f534989189f9f60b2597e8
Author: Chang Liu <cl3403@columbia.edu>
Date: Wed Apr 12 22:04:31 2017 -0400

 added bool back to ast.ml

commit 737ca0838a9324a8616e9918ee9a2a3fa781cb8b
Author: Will Essilfie <wke2102@columbia.edu>
Date: Wed Apr 12 21:30:54 2017 -0400

 adding string into scanner

commit a17f04f4720096d0e3fb129becaf7246e158226a
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Sun Apr 9 19:45:25 2017 -0400

 Implement string comparison

commit d4dc2bda25f104d2a824806db3a679eff24a964d
Merge: 8d86030 8a4d964

 48

Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Sun Apr 9 19:10:38 2017 -0400

 Merge branch 'making-doubles-work' of https://github.com/PLT-DCL/dcl into
making-doubles-work

commit 8d860305cfb74692d03958ec691672a2d8cce10d
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Sun Apr 9 19:04:07 2017 -0400

 Make string concatenation work

commit 8a4d964502f9313a7ecb3ee38d58696db9908662
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sun Apr 9 18:38:17 2017 -0400

 Modified Makefile to clean every time

commit 412f7e75ba785616f416524f4e0bce2b22d70b18
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sun Apr 9 18:12:28 2017 -0400

 Modified docker Makefile to stop assigning a name to container except if you want
to modify the iamge

commit 887ae6a69d7262c9e1827f8df60830e6f4dcf1f4
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sun Apr 9 17:52:28 2017 -0400

 Updated file extensions to use .dcl

commit f17e689cc2a1d1d990f0fc2beba5ae8bd56026cc
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Sat Apr 1 13:25:39 2017 -0400

 Make double quoted strings usable again

commit c7fb0e4f3921ca36f727c7278ea058d95825f79d

 49

Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Sat Apr 1 00:55:17 2017 -0400

 Updated the example script

commit 2be370abdda5ff3d507875bfd6ba2ebbe30b39a2
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Fri Mar 31 06:57:32 2017 -0400

 Exponentiation and Hello World

 They said it couldn't be done; they were wrong.
 (Not complete coverage on strings yet..)

commit 4a63b15124ad5064c38a0184c094699d6893edcf
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Mon Mar 27 12:41:36 2017 -0400

 Provide full functionality for double

 We finally have the extra type we need to make tests work.

commit 518e83fe9d8a2231f7c35d1611f3d2f2b9223100
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Mon Mar 27 00:09:31 2017 -0400

 Doubles still aren't working... but maybe

commit f337db26ae07398cfa21180e903455f98df32b9c
Author: ashutoshnanda <ashutosh.nanda@gmail.com>
Date: Sat Mar 25 12:42:35 2017 -0400

 Remove bools and change Literal -> IntLiteral

 We need to remove these holdovers from MicroC since DCL doesn't have them.

commit 97f0b4eed0b534d315237f215d761bfa9a99d06b
Author: Craig Rhodes <cdr2139@columbia.edu>

 50

Date: Sat Mar 25 12:11:15 2017 -0400

 Updated microc to one with bindings

commit 5c6b32877a93d283c5e0cbcd61966b06b3c975d2
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Sat Mar 25 11:45:42 2017 -0400

 Updated Makefile to work with /bin/bash entrypoint for docker image

commit 2dff55b37c053bbaefab15a61021cbaa652a742f
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Tue Mar 21 02:01:00 2017 -0400

 Added clean as prerequisite (before compile) to test target in docker Makefile

commit c757c5140cee36e0f1262f189d38fe73b52a338c
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 20 18:49:08 2017 -0400

 Made README look better

commit 9738808fa80bfd3949073c6e5c63241086f2262e
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 20 18:47:36 2017 -0400

 Made README look better

commit 15465811d011c0abbf0c55fa6cded42e203b7425
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 20 18:42:44 2017 -0400

 Improved README format

commit d4d71f8808941f5e68148c478e5c734b3875fe5d
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 20 18:35:48 2017 -0400

 51

 Added CircleCI status badge to README

commit ce61cf6214e2c33e9623f678c7984c982ecb9623
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 20 18:20:32 2017 -0400

 Updated circle.yml with spaces instead of tabs

commit 4fd214fa5b18d8b15c5148f5d732fff38d05a8ce
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 20 18:17:29 2017 -0400

 Added a circle.yml file for CI

commit 260df19825f73b5171d4d1d2165708cfe97defd6
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 20 17:32:21 2017 -0400

 Added a Dockerfile and modified docker Makefile to automatically run the testall.sh
script

commit b7e3876881d8c9c4bb490c270c7b5d05ff5ecf5b
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 20 15:13:34 2017 -0400

 Updated docker Makefile for more easily modifying docker image

commit c2cac07d7bac308db943a2e8464152f707f628c7
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Tue Mar 14 23:15:43 2017 -0400

 Made docker Makefile remove containers on exit

commit 39a95326115aafaa63554ae639debedec0e94130
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 13 20:38:38 2017 -0400

 Updated docker Makefile to not commit on pushing

 52

commit 8269dbff1702fac66cd2c38c7a5a228465dcd90a
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 13 15:32:00 2017 -0400

 Updated README.md with new commands inside docker environment

commit 19573c72b12b40ed3ee8ee5306f61c3e4e975c60
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 13 15:28:55 2017 -0400

 Modified README.md to avoid a step

commit 55119f3426ef3e7f95f0cadfafd8278e85ed361b
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Mon Mar 13 15:23:32 2017 -0400

 Updated README.md with compile and run instructions

commit cb820c25ae935316b085bf98f04e24d8a76c8735
Author: Will Essilfie <wke2102@columbia.edu>
Date: Thu Mar 2 23:15:34 2017 -0500

 updated README

commit 7ba701379fe1700fb51f8d066f0fc033c5d68e9e
Author: Craig D. Rhodes III <cdr2139@columbia.edu>
Date: Thu Mar 2 15:43:16 2017 -0500

 Set theme jekyll-theme-cayman

commit 16b6f099b73a32f2e40894f7ec22a6f316204806
Author: Craig Rhodes <cdr2139@columbia.edu>
Date: Thu Mar 2 14:27:53 2017 -0500

 Initial commit.

 53

Software Development Environment
For this project, we were able to save a lot of time by using a Docker image to make
working and running files easy on any machine. Our Docker image was loaded with the
following files.
● Ubuntu 15.10 - We used Ubuntu as an easy way to access OCaml and LLVM

software. This also helped for setting the standard for our Docker image.
● LLVM-3.7 - We used the most recent LLVM version to ensure easy code

generation in OCaml.
● Facebook Messenger - We used Messenger to communicate with one another

because it was easy to use and a platform most of us are on often. This made it
easy to quickly ping the group to get help and search the message history for
past discussions on bugs we had in the language.

● GitHub - We used GitHub to save our commits and maintain our different
branches. This made it a lot easier to get work done and revert to old versions
in case something broke.

● Sublime Text - We used Sublime Text for writing code because it was fast and
easy to use.

Programming Style Guide
To make it easy for everyone to understand our code base we tried to adhere to the
following programming style guide:
● Keep lines shorter than 80 characters
● When making major code changes, comment the code so others can

understand the rationale
● If a certain algorithm is needed multiple time, split it out into a new function

 54

Chapter 5: Architectural Design

Diagram Overview
A diagram laying out the setup of DCL can be found below.

Scanner
Scanner takes in a DCL program and tokenizes based on the defined tokens laid out by
the language. This is a quick and easy process with the main work being the regular
expressions meant to identify special types such as strings, integers, and escaped
characters.

Parser
Parser requires a tokenized program (created by Scanner) and runs the program
through the Context Free Grammar (CFG) that comprises the DCL language. If the
program passes, an Abstract Syntax Tree (AST) is successfully built that now represents
the original program. For dealing with associativity, this is set for most operators
allowed in the language to avoid issues related to ambiguity. In addition, we focused
on avoiding shift/reduce errors in the language.

 55

Semant
Semant does a postorder traversal of the Abstract Syntax Tree. This is helpful for
verifying type matching, ensuring that a user does not use specific keywords for
function names. If an error is found, the program will fail to compile and the user will
get a message with some details of the error in their console.

Codegen
Once the semantic check has occured successfully, code generator uses the abstract
syntax tree to create the LLVM IR file. This file specifies the final instructions for the
program that is now ready to be executed.

Who Did What
As stated also in Chapter 4, each member played an important role in getting this
project completed:

Chapter 6: Test Plan

Unit and Integration Testing
Testing was a major part of our project because of its size and scope. When run, the
scanner, parser, semantic analyzer, and code generation files need to run and execute
as specified by us. In fact, we relied on test driven development when adding new
features. For a new feature to be added, we went through the following steps:

1. Create a sample program that follows intended specifications for the new
feature.

2. Open scanner file and add new tokens if needed.

Team Member Responsibilities

Ashutosh Nanda Doubles, Arrays, Codegen, Parser

Chang Liu Test Suite, Strings, Parser, Codegen, Semant

Craig Rhodes Callbacks, Circle CI, Docker, AST, LRM

William Essilfie Scanner, Parser, Test Suite, Semant, Final Report

 56

3. Update the parser file with new rules if the new features changes the language
grammar.

4. Test that sample program accepted by parser and scanner. Verify that wrong
implementations fail. If there are errors here, return to previous two steps.

5. Update semant file to check for possible issues with the feature’s semantics.
6. Repeat step four, but include testing on semant file.
7. In the code generation file, work on generating the correct LLVM IR code for the

added feature.
8. Update sample program to actually use your feature to ensure it works.
9. Continue testing the new feature with sample programs and modifying code

generation as needed.
10.Save sample programs and add to test files directory.

While this process is tedious, it was helpful for ensuring that new features were
implemented correctly and helped stop issues from occurring in later features because
they relied on other new features. This was also useful for verifying new features did
not break old features. For our testing purposes, we mostly used integration testing
since new features needed to go through the entire system flow to be effectively
tested. Unit testing was not as useful because a specific unit test could pass but the
entire system could now have a bug because of that the original unit test failed to
catch. Our test cases were based on the current test cases from MicroC, a language
written by Stephen Edwards at Columbia University, as well as new test cases added to
reflect DCL-specific language features.

Test Suite and Automated Regression Testing
Part of DCL’s test suite is based on MicroC’s automated regression testing system.
Within the tests directory, we have included scores of tests that cover various aspects
of our language along with their expected output. In addition, we have test cases for
programs that should fail and the expected errors that these programs should produce.

This automated system was useful for testing language features because within
seconds, the system can run all the test files and report which files passed and which
failed. This meant when a new featured was tested, it did not take long to discover if it
was functioning correctly. To use the test script, a user just needs to type ./testall.sh
from their command line console.

 57

In addition to using a script, we set up Continuous Integration for DCL. This meant that
whenever the master branch of DCL’s GitHub is updated, a system automatically runs
all of the current test cases and reports whether the test suite passed. It also updates
the button on the DCL Github page showing the language’s status and notifies the
team via email. This made it easy to see if a merge caused issues in the language and
allows the team to quickly rectify any issues. Lastly, because our group used test driven
development, all of us worked on making test cases for the language.

Test Cases and Outputs
fail-assign1.dcl:
int main()
{
 int i;
 double b;

 i = 42;
 b = 25.7;
 i = 25.7; /* Fail: assigning a double to an integer */
}

fail-assign1.err:
Fatal error: exception Failure("illegal assignment int = double in i = 25.7")

fail-assign2.dcl:
int main()
{
 int i;
 string b;

 b = 48; /* Fail: assigning an integer to a bool */
}

 58

fail-assign2.err:
Fatal error: exception Failure("illegal assignment string = int in b = 48")

fail-assign3.dcl:
void myvoid()
{
 return;
}

int main()
{
 int i;

 i = myvoid(); /* Fail: assigning a void to an integer */
}

fail-assign3.err:
Fatal error: exception Failure("illegal assignment int = void in i = myvoid()")

fail-concatenation1.dcl:
void main() {
 string g;
 int[] h;
 string i;
 g = "hello";
 h = [3,4,5,6];
 i = g + h;
}

/* should fail because string + array concatenation not supported */

 59

fail-concatenation1.err:
Fatal error: exception Failure("illegal binary operator string + int[] in g + h")

fail-dead1.dcl:
int main()
{
 int i;

 i = 15;
 return i;
 i = 32; /* Error: code after a return */
}

fail-dead1.err:
Fatal error: exception Failure("nothing may follow a return")

fail-dead2.dcl:
int main()
{
 int i;

 {
 i = 15;
 return i;
 }
 i = 32; /* Error: code after a return */
}

fail-dead2.err:

 60

Fatal error: exception Failure("nothing may follow a return")

fail-exponents1.dcl:
double main() {
 double a;
 string b;
 b = "hello";
 a = b^2;
 print_line(a);
 return a;
}

/* verify exponents only work on doubles */

fail-exponents1.err:
Fatal error: exception Failure("illegal binary operator string ^ int in b ^ 2")

fail-expr1.dcl:
int a;
double b;

void foo(int c, double d)
{
 int dd;
 double e;
 a + c;
 c - a;
 a * 3;
 c / 2;
 d + a; /* Error: double + int */
}

int main()

 61

{
 return 0;
}

fail-expr1.err:
Fatal error: exception Failure("illegal binary operator double + int in d + a")

fail-expr2.dcl:
int a;
double b;

void foo(int c, double d)
{
 int d;
 double e;
 b + a; /* Error: double + int */
}

int main()
{
 return 0;
}

fail-expr2.err:
Fatal error: exception Failure("illegal binary operator double + int in b + a")

fail-for1.dcl:
int main()
{
 int i;

 62

 for (; 1 ;) {} /* OK: Forever */

 for (i = 0 ; i < 10 ; i = i + 1) {
 if (i == 3) return 42;
 }

 for (j = 0; i < 10 ; i = i + 1) {} /* j undefined */

 return 0;
}

fail-for1.err:
Fatal error: exception Failure("undeclared identifier j")

fail-for2.dcl:
int main()
{
 int i;

 for (i = 0; j < 10 ; i = i + 1) {} /* j undefined */

 return 0;
}

fail-for2.err:
Fatal error: exception Failure("undeclared identifier j")

fail-for3.dcl:
int main()
{

 63

 double j;

 for (int i = 0; j ; i = i + 1) {} /* j is a double, not an integer */

 return 0;
}

fail-for3.err:
Fatal error: exception Failure("expected int expression in j")

fail-for4.dcl:
int main()
{
 int i;

 for (i = 0; i < 10 ; i = j + 1) {} /* j undefined */

 return 0;
}

fail-for4.err:
Fatal error: exception Failure("undeclared identifier j")

fail-for5.dcl:
int main()
{
 int i;

 for (i = 0; i < 10 ; i = i + 1) {
 foo(); /* Error: no function foo */

 64

 }

 return 0;
}

fail-for5.err:
Fatal error: exception Failure("unrecognized function foo")

fail-func1.dcl:
int foo() {}

int bar() {}

int baz() {}

void bar() {} /* Error: duplicate function bar */

int main()
{
 return 0;
}

fail-func1.err:
Fatal error: exception Failure("duplicate function bar")

fail-func2.dcl:
int foo(int a, double b, int c) { }

void bar(int a, double b, int a) {} /* Error: duplicate formal a in bar */

 65

int main()
{
 return 0;
}

fail-func2.err:
Fatal error: exception Failure("duplicate variable a in bar")

fail-func3.dcl:
int foo(int a, double b, int c) { }

void bar(int a, void b, int c) {} /* Error: illegal void formal b */

int main()
{
 return 0;
}

fail-func3.err:
Fatal error: exception Failure("illegal void formal b in bar")

fail-func4.dcl:
int foo() {}

void bar() {}

int print() {} /* Should not be able to define print */

void baz() {}

 66

int main()
{
 return 0;
}

fail-func4.err:
Fatal error: exception Failure("function print may not be defined")

fail-func5.dcl:
int foo() {}

int bar() {
 int a;
 void b; /* Error: illegal void local b */
 double c;

 return 0;
}

int main()
{
 return 0;
}

fail-func5.err:
Fatal error: exception Failure("illegal void local b in bar")

fail-func6.dcl:
void foo(int a, double b)
{

 67

}

int main()
{
 foo(42, 32.3);
 foo(42); /* Wrong number of arguments */
}

fail-func6.err:
Fatal error: exception Failure("expecting 2 arguments in foo(42)")

fail-func7.dcl:
void foo(int a, double b)
{
}

int main()
{
 foo(42, 23.4);
 foo(42, 23.5, 636.1); /* Wrong number of arguments */
}

fail-func7.err:
Fatal error: exception Failure("expecting 2 arguments in foo(42, 23.5, 636.1)")

fail-func8.dcl:
void foo(int a, double b)
{
}

 68

void bar()
{
}

int main()
{
 foo(42, 32.5);
 foo(42, bar()); /* int and void, not int and double */
}

fail-func8.err:
Fatal error: exception Failure("illegal actual argument found void expected double in
bar()")

fail-func9.dcl:
void foo(int a, double b)
{
}

int main()
{
 foo(42, 23.3);
 foo(42, 42); /* Fail: int, not double */
}

fail-func9.err:
Fatal error: exception Failure("illegal actual argument found int expected double in
42")

fail-global1.dcl:

 69

int c;
double b;
void a; /* global variables should not be void */

int main()
{
 return 0;
}

fail-global1.err:
Fatal error: exception Failure("illegal void global a")

fail-global2.dcl:
int b;
double c;
int a;
int b; /* Duplicate global variable */

int main()
{
 return 0;
}

fail-global2.err:
Fatal error: exception Failure("duplicate global b")

fail-if1.dcl:
int main()
{

 70

 if (1) {}
 if (0) {} else {}
 if (0.5) {} /* Error: non-int predicate */
}

fail-if1.err:
Fatal error: exception Failure("expected int expression in 0.5")

fail-if2.dcl:
int main()
{
 if (1) {
 foo; /* Error: undeclared variable */
 }
}

fail-if2.err:
Fatal error: exception Failure("undeclared identifier foo")

fail-if3.dcl:
int main()
{
 if (1) {
 42;
 } else {
 bar; /* Error: undeclared variable */
 }
}

 71

fail-if3.err:
Fatal error: exception Failure("undeclared identifier bar")

fail-nomain.dcl:

fail-nomain.err:
Fatal error: exception Failure("unrecognized function main")

fail-return1.dcl:
int main()
{
 return 0.5; /* Should return int */
}

fail-return1.err:
Fatal error: exception Failure("return gives double expected int in 0.5")

fail-return2.dcl:
void foo()
{
 if (1) return 42; /* Should return void */
 else return;
}

int main()
{
 return 42;

 72

}

fail-return2.err:
Fatal error: exception Failure("return gives int expected void in 42")

fail-string1.dcl:
void main() {

 string[] g;
 g = ['hello', 'from', 'the', 'other', 'side'];
 print_line(g{|0|});
 int value = g{|2|};

}

/* verifies that setting string to int fails */

fail-string1.err:
Fatal error: exception Failure("illegal assignment int = string in int value = g{|2|}")

fail-string2.dcl:
void main() {
 string g;
 int h;
 string i;
 g = "hello";
 h = 3;
 i = g + h;
}
/* should fail because string + int concatenation not allowed */

 73

fail-string2.err:
Fatal error: exception Failure("illegal binary operator string + int in g + h")

fail-string3.dcl:
void main() {
 string g;
 double h;
 string i;
 g = "hello";
 h = 3.0;
 i = g + h;
}

/* should fail because string + double concatenation not allowed */

fail-string3.err:
Fatal error: exception Failure("illegal binary operator string + double in g + h")

fail-while1.dcl:
int main()
{
 int i;

 while (1) {
 i = i + 1;
 }

 while (32.5) { /* Should be boolean */
 i = i + 1;
 }

}

 74

fail-while1.err:
Fatal error: exception Failure("expected int expression in 32.5")

fail-while2.dcl:
int main()
{
 int i;

 while (1) {
 i = i + 1;
 }

 while (1) {
 foo(); /* foo undefined */
 }

}

fail-while2.err:
Fatal error: exception Failure("unrecognized function foo")

test-add1.dcl:

int main()
{
 int a;
 int b;
 a = 17;
 b = 25;

 75

 print_line(a+b);
 return 0;
}

test-add1.out:
42

test-arith1.dcl:
int main()
{
 print_line(39 + 3);
 return 0;
}

test-arith1.out:
42

test-arith2.dcl:
int main()
{
 print_line(1 + 2 * 3 + 4);
 return 0;
}

test-arith2.out:
11

 76

test-arith3.dcl:
int foo(int a)
{
 return a;
}

int main()
{
 int a;
 a = 42;
 a = a + 5;
 print_line(a);
 return 0;
}

test-arith3.out:
47

test-array1.dcl:
void main() {
 int a;
 int[] b;
 b = [4,4,5];
 print_line(b{|0|});

}

/* verifies printing a value at array index works */

test-array1.out:
4

 77

test-array2.dcl:
void main() {
 int a;
 double[] b;
 b = [4.1,4.2,5.3];
 print_line(b{|1|});

}

/* verifies printing a value at array index works -- for doubles */

test-array2.out:
4.2

test-array3.dcl:
void main() {
 int a;
 string[] b;
 b = ['craig','will','chang'];
 print_line(b{|2|});

}

/* verifies printing a value at array index works -- for doubles */

test-array3.out:
chang

test-callbacks1.dcl:

int x = 0 buteverytime (x==2) { print_line(x); }

int main() {
 x = 2;

 78

 print_line("Hello");
 x = 1;
 print_line("world");
 x = 2;
 x = 0;

}

/* test setup up of a callback set globally */

test-callbacks1.out:
2
Hello
World
2

test-callbacks2.dcl:
int y = 0 buteverytime (y==3) {
 print_line("y is 3 now!!!");
 y = 0;
}

int main() {
 y = 3;
 print_line("Testing 1");
 y = 1;
 print_line("Testing 2");
 y = 3;
 y = 2;
 return 0;
}

/* test setup up of a callback set globally */

test-callbacks3.dcl:

 79

double z = 3.5 buteverytime (z == 1.414) {
 print_line("z is the square root of 2 now! And we are changing it back to 3.5");
 z = 3.5;

}

int main() {
 z = 2.3;
 z = 1.414;
 z = 6.7;
 z = 5.2;
 return 0;

}

 /* testing callbacks with double */

test-callbacks4.dcl:
int x = 5 buteverytime (x == 0) {
 print_line("x is zero now! x should not be 0! Setting it back to 5");
 x = 5;

}

int y = 10 buteverytime (y == 0) {
 print_line("y is also zero now, and y should not be 0. Setting it back to 10");
 y = 10;
}

double z;
int c;

int main() {
 z = 3.2;
 x = 0;
 y = 0;

 80

 c = 4;

 return 0;

}

 /* testing several callbacks together */

test-double1.dcl:
double a;
double b = 3.5;

int main() {
 a = 3.5;
 double c = a + b;
 print_line(c);
 return 0;
}

/* testing doubles */

test-fib.dcl:
int fib(int x)
{
 if (x < 2) return 1;
 return fib(x-1) + fib(x-2);
}

int main()
{
 print_line(fib(0));
 print_line(fib(1));
 print_line(fib(2));
 print_line(fib(3));
 print_line(fib(4));
 print_line(fib(5));

 81

 return 0;
}

test-fib.out:
1
1
2
3
5
8

test-for1.dcl:
int main()
{
 int i;
 for (i = 0 ; i < 5 ; i = i + 1) {
 print_line(i);
 }
 print_line(42);
 return 0;
}

test-for1.out:
0
1
2
3
4
42

 82

test-for2.dcl:
int main()
{
 int i;
 i = 0;
 for (; i < 5;) {
 print_line(i);
 i = i + 1;
 }
 print_line(42);
 return 0;
}

test-for2.out:
0
1
2
3
4
42

test-func1.dcl:
int add(int a, int b)
{
 return a + b;
}

int main()
{
 int a;
 a = add(39, 3);
 print_line(a);
 return 0;
}

 83

test-func1.out:
42

test-func2.dcl:

int fun(int x, int y)
{
 return 0;
}

int main()
{
 int i;
 i = 1;

 fun(i = 2, i = i+1);

 print_line(i);
 return 0;
}

test-func2.out:
2

test-func3.dcl:
void printem(int a, int b, int c, int d)
{
 print_line(a);

 84

 print_line(b);
 print_line(c);
 print_line(d);
}

int main()
{
 printem(42,17,192,8);
 return 0;
}

test-func3.out:
42
17
192
8

test-func4.dcl:
int add(int a, int b)
{
 int c;
 c = a + b;
 return c;
}

int main()
{
 int d;
 d = add(52, 10);
 print_line(d);
 return 0;
}

 85

test-func4.out:
62

test-func5.dcl:
int foo(int a)
{
 return a;
}

int main()
{
 return 0;
}

test-func5.out:

test-func6.dcl:
int bar(int a, int c) { return a + c; }

int main()
{
 print_line(bar(17, 25));
 return 0;
}

test-func6.out:
42

 86

test-func7.dcl:
int a;

void foo(int c)
{
 a = c + 42;
}

int main()
{
 foo(73);
 print_line(a);
 return 0;
}

test-func7.out:
115

test-func8.dcl:
void foo(int a)
{
 print_line(a + 3);
}

int main()
{
 foo(40);
 return 0;
}

test-func8.out:

 87

43

test-gcd.dcl:
int gcd(int a, int b) {
 while (a != b) {
 if (a > b) a = a - b;
 else b = b - a;
 }
 return a;
}

int main()
{
 print_line(gcd(2,14));
 print_line(gcd(3,15));
 print_line(gcd(99,121));
 return 0;
}

test-gcd.out:
2
3
11

test-gcd2.dcl:
int gcd(int a, int b) {
 while (a != b)
 if (a > b) a = a - b;
 else b = b - a;
 return a;
}

 88

int main()
{
 print_line(gcd(14,21));
 print_line(gcd(8,36));
 print_line(gcd(99,121));
 return 0;
}

test-gcd2.out:
7
4
11

test-global1.dcl:
int a;
int b;

void printa()
{
 print_line(a);
}

void printb()
{
 print_line(b);
}

void incab()
{
 a = a + 1;
 b = b + 1;
}

int main()

 89

{
 a = 42;
 b = 21;
 printa();
 printb();
 incab();
 printa();
 printb();
 return 0;
}

test-global1.out:
42
21
43
22

test-global2.dcl:
double i;

int main()
{
 int i; /* Should hide the global i */

 i = 42;
 print_line(i + i);
 return 0;
}

test-global2.out:
84

 90

test-global3.dcl:
int i;
double b;
int j;

int main()
{
 i = 42;
 j = 10;
 print_line(i + j);
 return 0;
}

test-global3.out:
52

test-hello.dcl:
int main()
{
 print_line(42);
 print_line(71);
 print_line(1);
 return 0;
}

test-hello.out:
42
71
1

 91

test-if1.dcl:
int main()
{
 if (1) print_line(42);
 print_line(17);
 return 0;
}

test-if1.out:
42
17

test-if2.dcl:
int main()
{
 if (1) print_line(42); else print_line(8);
 print_line(17);
 return 0;
}

test-if2.out:
42
17

test-if3.dcl:
int main()
{
 if (0) print_line(42);

 92

 print_line(17);
 return 0;
}

test-if3.out:
17

test-if4.dcl:
int main()
{
 if (0) print_line(42); else print_line(8);
 print_line(17);
 return 0;
}

test-if4.out:
8
17

test-if5.dcl:
int cond(int b)
{
 int x;
 if (b)
 x = 42;
 else
 x = 17;
 return x;
}

 93

int main()
{
 print_line(cond(1));
 print_line(cond(0));
 return 0;
}

test-if5.out:
42
17

test-interleave1.dcl:
int main() {
 int a;
 int c;
 a = 5;
 int d;
 d = 5;

 print_line(a);
 print_line(7);
 print_line(d);
 return a;
}

/* verifies interleaving of code and variable initialization */

test-interleave1.out:
5
7
5

 94

test-interleave2.dcl:
double test(double x) {
 return x;

}

int main() {
 test(4.3);
 int a;
 a = 5;
 print_line(a);
 return a;
}

/* interleaving calling other functions and initializing variables */

test-interleave2.out:
4.3
5

test-interleave3.dcl:
string hello_world() {
 print_line("hello world!");
 return "hello world!";
}

int main() {
 int a;
 int b;
 a = 5;
 b = 10;
 hello_world();
 string s;
 s = "hello world again!";

 95

 print_line(s);

}

/* verifying that interleaving of initializing variables and calling functions */

test-interleave3.out:
hello world!
hello world again!

test-local1.dcl:
void foo(double i)
{
 int i; /* Should hide the formal i */

 i = 42;
 print_line(i + i);
}

int main()
{
 foo(3.5);
 return 0;
}

test-local1.out:
84

test-local2.dcl:
int foo(int a, double b)
{

 96

 int c;
 double d;

 c = a;

 return c + 10;
}

int main() {
 print_line(foo(37, 3.5));
 return 0;
}

test-local2.out:
47

test-ops1.dcl:
int main()
{
 print_line(1 + 2);
 print_line(1 - 2);
 print_line(1 * 2);
 print_line(100 / 2);
 print_line(99);
 print_line(1 == 2);
 print_line(1 == 1);
 print_line(99);
 print_line(1 != 2);
 print_line(1 != 1);
 print_line(99);
 print_line(1 < 2);
 print_line(2 < 1);
 print_line(99);
 print_line(1 <= 2);

 97

 print_line(1 <= 1);
 print_line(2 <= 1);
 print_line(99);
 print_line(1 > 2);
 print_line(2 > 1);
 print_line(99);
 print_line(1 >= 2);
 print_line(1 >= 1);
 print_line(2 >= 1);
 return 0;
}

test-ops1.out:
3
-1
2
50
99
0
1
99
1
0
99
1
0
99
1
1
0
99
0
1
99
0
1

 98

1

test-ops2.dcl:
int main()
{
 print_line(-10);
 print_line(--42);
}

test-ops2.out:
-10
42

test-string1.dcl:
int hamilton() {
 int thomasjefferson = 1789;
 int myshot = 1;
 return thomasjefferson;
}

string colorpurple() {
 string leadin = "Like a blade of corn, like a honey bee";
 string color = "Like the color purple. Where do it come from?";
 string response = leadin + color;
 print_line(response);
 return response;

}

double groundhog_day() {
 double dayone = 42.0;
 double daytwo = 42.0;

 99

 double daythree = 42.0;
 print_line("fasfas");
 return daythree;

}

int main(){
 int ham = hamilton();
 colorpurple();
 groundhog_day();
 print_line(ham);
 return ham;

}
/* verifies string concatenation */

test-string1.out:
Like a blade of corn, like a honey bee Like the color purple. Where do it come from?
it's groundhog day!!!!!!!
1789

test-string2.dcl:
void main() {
 string g;
 string[] h;
 string i;
 g = "hello";
 h = ['world', 'ghana'];
 i = (h{|0|}) + g;
 print_line(i);
}

 100

/*should work because string + string concatenation is supported */

test-string2.out:
hello world

test-tilde1.dcl:
int i = 7 buteverytime (i == 0 && ~i != 0) {
 print_line("You might do it, but don\'t divide by zero accidentally!");
}

int return_one_if_not_empty(string hi) {
 return #hi > 0;
}

string craig = "Hello" buteverytime(~craig != "Hello" && craig == "Hello") {
 print_line("Previously on DCL... " + ~craig);
 print_line("You said hello to Craig");
}

string chang = "all over the place" buteverytime(return_one_if_not_empty(chang)) {
 print("chang..");
}

void main() {
 i = 0;
 i = 0;
 i = 7;
 i = 0;
 i = 0;
 int bye_craig = 47;
 craig = "bye";
 craig = "Hello";
 if("hi" <= "hi") {
 print_line("hi");
 }

 101

}

/* testing tilde operator */

test-tilde2.dcl:
double a = 7.2 buteverytime (a == 1.414 && ~a != 1.414) {
 print_line("Careful! a is now the square root of 2 ");
}

int b = 3 buteverytime(b == 10 && ~b != 10) {
 print_line("b is now 10!");
}

void main() {
 a = 0.3;
 b = 2;
 a = 1.414;
 print(a);
 b = 10;
 print(b);
}

/* should only print each message only once */

test-tilde3.dcl:
string x;
double y;

int a = 4 buteverytime(a == -1 && ~a != -1) {
 print_line("a is -1 now which is dangerous");
}

string c = "Hi" buteverytime (c == "Hola" && ~c != "Hola") {
 print_line("c is now in Spanish");
}

 102

void main() {
 x = "DCL";
 y = 3.5;
 a = 0;
 c = "Guten Tag";
 a = 3;
 c = "Hola";
 a = -1;
 c = "Konnichiwa";
}

/* testing callbacks, tilde operator, and global variables altogether */

test-var1.dcl:
int main()
{
 int a;
 a = 42;
 print_line(a);
 return 0;
}

test-var1.out:
42

test-var2.dcl:
int a;

void foo(int c)
{
 a = c + 42;

 103

}

int main()
{
 foo(73);
 print_line(a);
 return 0;
}

test-var2.out:
115

test-while1.dcl:
int main()
{
 int i;
 i = 5;
 while (i > 0) {
 print_line(i);
 i = i - 1;
 }
 print_line(42);
 return 0;
}

test-while1.out:
5
4
3
2
1
42

 104

test-while2.dcl:
int foo(int a)
{
 int j;
 j = 0;
 while (a > 0) {
 j = j + 2;
 a = a - 1;
 }
 return j;
}

int main()
{
 print_line(foo(7));
 return 0;
}

test-while2.out:
14

Chapter 7: Lessons Learned

Ashutosh
There are two major takeaways I have from this project. On the technical side, it's really
empowering to have an idea of how every feature in a language goes from idea to fully
functioning: not identifying it during scanning, getting conflicts during parser, breaking
during semantic analysis, and creating LLVM errors and broken modules. On a more
serious note, it's really cool to understand how much underlies something as an array;
you might think it's just a block of memory, but you can't appreciate it without
understanding how to make it interact with other things within a language you design. I
now have a much deeper appreciation for how well languages (even like Java) work

 105

today and the fact that people much smarter than me have lost sleep over simple
things that we take for granted in programming things today.

The other significant takeaway is about working on a team project. You can't build a
good programming language within a semester alone, and it's really important to rely
on teammates and their abilities. While not everybody is going to be good at the same
things, it's important to keep an understanding of where certain people can shine.
Furthermore, just walking through a problem with someone else makes not only your
understanding of the problem deeper but also lets other team members get a more
comprehensive idea of each component within the project, which is important when
you and your team are working on the same issues. There's no "I" in team, and there's
definitely no "I" in PLT, so working well within your team is key to getting the project
working without going to hell and back.

Chang
The two most intimidating things about this project are understanding how the code
could work in detail and figuring out how to implement new features that are different
from all the previous work.

It was not an easy task to actually understand all the basic code provided. First of all,
the OCaml syntax (hundreds of lines of the nested let statements) is not that easy to
understand even after doing a homework assignment, and it is a demanding job to
work with parser, AST, and the other files all at the same time to make the language
compile. Once you understand the whole thing pretty well, the next big challenge is to
figure out how to implement new features, especially those that are not similar to
existing ones.

Due to lack of documentation of LLVM, there were many things that we thought could
work very well logically but had no idea how to implement in LLVM, and there were
also things that should have worked but failed because of some LLVM features.
In short, time is the ultimate limit on this project, because with the elusive OCaml
syntax and lack of LLVM documentation, it simply takes lots of time to get used to the
syntax and try to implement new things with several approaches that could logically
work in LLVM.

 106

In addition, there are also many other things to worry about for this project such as
group work, writing reports, preparing for the demo, etc. It is a BIG project, so it is very
important to keep up the hard work with the group throughout the entire semester.

Craig
The project introduced me to a side of Computer Science that I had never seen before;
I got to interact with the entire process of compilation to build the compiler for our
own language. I find it invaluable that I can now describe the typical process of
compilation from lexical analysis to idealized machine code. Needless to say, with the
successes came many failures and lessons to be learned as a result.

One such lesson that I learned was to plan ahead. Although we did plan meetings
every week, we had a noticeable lack of trajectory that led us to aimlessly work on
some feature that had not yet been completed. On the surface, there does not appear
to be too much wrong with that, but retrospectively, it has certainly slowed us down.

Throughout the project, I learned the importance of team meetings and the utility of
pair programming. At times, we opted to work remotely instead of physically meeting.
This led to some miscommunications about what was currently done and what needed
to be worked on and, later, led to some very unfortunate merge conflicts. Physically
meeting gave us the opportunity to “pair program” on difficult tasks by assigning two
people to work on one problem together. Pair programming afforded us success on
some problem areas like implementing different types and using C bindings.

Overall, I feel that I learned a great deal throughout this project that can be applied to
areas far beyond Computer Science.

William

Working on this project showed me a lot about the intricacies of building a
programming language and about working on teams to build “products.”At the start of
the project, we had some fairly lofty goals for what this language would be able to do
and by when we would have each featured finished. After a few iterations, it became
clear that the velocity at which we would be able to build features would be slower
than we initially planned due to our workloads and the time it took to fully understand
how to solve the technical problems we faced. This meant that by the end, we had to
look at our product backlog and be much more selective in choosing which features to
work on. While this may have been disappointing at first, it showed us that there is
always a balance between the goals you have for a product versus the core features
needed within a limited development window.

 107

Moreover, our group learned a lot about the usefulness of doing pair programming. By
having two people working on a feature, it made sure both of them had a good
understanding of how their feature worked in the context of the entire language, but
also made it easy for others to find help when needed if one of the two people was
unavailable to talk. It also helped speed up building features because two brains are
always better than one.

Lastly, make sure to plan and do work early. This project will take much longer than you
expect to complete and you will get frustrated often. If you think your team is behind,
be more proactive in pushing the group to meet more and work on debugging sooner
to avoid being overloaded with work in the later half of the semester.

Chapter 8: Code Listing
A full copy of the code written for DCL can be found below. Since each team member
worked on all the files, we have not added individual sign offs.

DCL.ml

(*	Top-level	of	the	DCL	compiler:	scan	&	parse	the	input,	

			check	the	resulting	AST,	generate	LLVM	IR,	and	dump	the	module	*)	

type	action	=	Ast	|	LLVM_IR	|	Compile	

let	_	=	

		let	action	=	if	Array.length	Sys.argv	>	1	then	

				List.assoc	Sys.argv.(1)	[("-a",	Ast);	 (*	Print	the	AST	only	*)	

	 	 	 						("-l",	LLVM_IR);		(*	Generate	LLVM,	don't	check	
*)	

	 	 	 						("-c",	Compile)]	(*	Generate,	check	LLVM	IR	*)	

		else	Compile	in	

 108

		let	lexbuf	=	Lexing.from_channel	stdin	in	

		let	ast	=	Parser.program	Scanner.token	lexbuf	in	

		Semant.check	ast;	

		match	action	with	

				Ast	->	print_string	(Ast.string_of_program	ast)	

		|	LLVM_IR	->	print_string	(Llvm.string_of_llmodule	
(Codegen.translate	ast))	

		|	Compile	->	let	m	=	Codegen.translate	ast	in	

				Llvm_analysis.assert_valid_module	m;	

				print_string	(Llvm.string_of_llmodule	m)	

Scanner.mll

(*	Ocamllex	scanner	for	DCL	*)	

{	open	Parser	}	

let	exponent_rule	=	('e'	|	'E')	('+'	|	'-')?	['0'-'9']+	

let	float_rule	=													'.'['0'-'9']+	exponent_rule?	|		

																	['0'-'9']+	('.'['0'-'9']*	exponent_rule?	|	

																		 																							exponent_rule)	

 109

let	string_rule	=	('\''	|	'\"')	

																		(['	'-'!']	|	

																			['#'-'&']	|		

																			['('-']']	|		

																			[']'-'~']	|		

																						"\\\\"	|	

																							"\\r"	|	

																							"\\n"	|	

																							"\\t"	|	

																						"\\\'"	|	

																						"\\\"")*		

																		('\''	|	'\"')	

rule	token	=	parse	

		['	'	'\t'	'\r'	'\n']	{	token	lexbuf	}	(*	Whitespace	*)	

|	"/*"					{	comment	lexbuf	}											(*	Comments	*)	

(*	Brackets	and	Punctuation	*)	

|	'('						{	LPAREN	}	

|	')'						{	RPAREN	}	

 110

|	'{'						{	LBRACE	}	

|	'}'						{	RBRACE	}	

|	';'						{	SEMI	}	

|	','						{	COMMA	}	

(*	Mathematical	Operators	*)	

|	'+'						{	PLUS	}	

|	'-'						{	MINUS	}	

|	'*'						{	TIMES	}	

|	'/'						{	DIVIDE	}	

|	'^'						{	EXPONT	}	

|	'='						{	ASSIGN	}	

(*Equality	Operators	*)	

|	"=="					{	EQ	}	

|	"!="					{	NEQ	}	

|	"<"						{	LT	}	

|	"<="					{	LEQ	}	

|	">"						{	GT	}	

|	">="					{	GEQ	}	

(*	Logical	Operators	*)	

 111

|	"&&"					{	AND	}	

|	"||"					{	OR	}	

|	"!"						{	NOT	}	

|	"~"						{	TILDE	}	

(*	Conditional	Operators	*)	

|	"if"					{	IF	}	

|	"else"			{	ELSE	}	

|	"for"				{	FOR	}	

|	"while"		{	WHILE	}	

(*	Keywords	for	functions	*)	

|	"return"	{	RETURN	}	

|	"buteverytime"	{	BUTEVERYTIME	}	

(*	Keywords	for	Data	Types	*)	

|	"int"				{	INT	}	

|	"double"	{	DOUBLE	}	

|	"string"	{	STRING	}	

|	"void"			{	VOID	}	

 112

|	"["						{	LSQUARE	}	

|	"]"						{	RSQUARE	}	

|	","						{	COMMA	}	

|	"{|"					{	LINDEX	}	

|	"|}"					{	RINDEX	}	

|	"of"					{	OF	}	

|	"#"						{	LENGTH	}	

|	['0'-'9']+	as	lxm	{	INTLITERAL(int_of_string	lxm)	}	

|	float_rule	as	lxm	{	DBLLITERAL(float_of_string	lxm)	}	

|	string_rule	as	lxm	{	STRLITERAL(let	rec	int_range	=	function	

																																							0	->	[]	

																																				|		1	->	[0]	

																																				|	n	->	int_range	(n	-	1)	@	[n	-	1	
]	in	

																																		let	rec	glob	=	function		

																																				|	'\\'	::	'n'	::	rest	->	'\n'	::	
(glob	rest)	

																																				|	'\\'	::	'r'	::	rest	->	'\r'	::	
(glob	rest)	

																																				|	'\\'	::	't'	::	rest	->	'\t'	::	
(glob	rest)	

																																				|	'\\'	::	'\\'	::	rest	->	'\\'	::	
(glob	rest)	

																																				|	'\\'	::	'"'	::	rest	->	'\"'	::	
(glob	rest)	

 113

																																				|	'\\'	::	'\''	::	rest	->	'\''	::	
(glob	rest)	

																																				|	x	::	rest	->		x	::	(glob	rest)		

																																				|	[]	->	[]	in	

	 																														let	char_cleaned	=	glob	(List.map	
(fun	x	->	lxm.[x])	(int_range	(String.length	lxm)))	in	

	 																														let	cleaned	=	String.concat	
""	(List.map	(fun	x	->	String.make	1	x)	char_cleaned)	in	

	 																														let	strlen	=	String.length	cleaned	
in	

																																if	strlen	==	2	then	""	else	String.sub	
cleaned	1	(strlen	-	2))	}	

|	['a'-'z'	'A'-'Z']['a'-'z'	'A'-'Z'	'0'-'9'	'_']*	as	lxm	{	ID(lxm)	}	

|	eof	{	EOF	}	

|	_	as	char	{	raise	(Failure("illegal	character	"	^	Char.escaped	
char))	}	

and	comment	=	parse	

		"*/"	{	token	lexbuf	}	

|	_				{	comment	lexbuf	}	

Parser.mly
%{	

open	Ast	

%}	

 114

/*	Ocamlyacc	parser	for	DCL	*/	

%token	SEMI	LPAREN	RPAREN	LBRACE	RBRACE	COMMA	

%token	PLUS	MINUS	TIMES	DIVIDE	EXPONT	ASSIGN	NOT	TILDE	

%token	EQ	NEQ	LT	LEQ	GT	GEQ	TRUE	FALSE	AND	OR	DOUBLE	STRING	
BUTEVERYTIME	

%token	RETURN	IF	ELSE	FOR	WHILE	INT	BOOL	VOID	LINDEX	RINDEX	

%token	LSQUARE	RSQUARE	OF	LENGTH	

%token	<int>	INTLITERAL	

%token	<float>	DBLLITERAL	

%token	<string>	STRLITERAL	

%token	<string>	ID	

%token	EOF	

%nonassoc	NOELSE	

%nonassoc	ELSE	

%right	ASSIGN	

%left	OR	

%left	AND	

%left	EQ	NEQ	

%left	LT	GT	LEQ	GEQ	

%left	PLUS	MINUS	

%left	TIMES	DIVIDE	

%right	EXPONT	

 115

%right	NOT	NEG	LENGTH	

%left	LINDEX	

%start	program	

%type	<Ast.program>	program	

%%	

program:	

		decls	EOF	{	$1	}	

decls:	

			/*	nothing	*/	{	[],	[]	}	

	|	decls	globalstmt	{	($2	::	fst	$1),	snd	$1	}	

	|	decls	bdecl	{	fst	$2	::	fst	$1,	(snd	$2	::	snd	$1)	}	

	|	decls	fdecl	{	fst	$1,	($2	::	snd	$1)	}	

fdecl:	

			typ	ID	LPAREN	formals_opt	RPAREN	LBRACE	stmt_list	RBRACE	

 116

					{	{	typ	=	$1;	

	 	fname	=	$2;	

	 	formals	=	$4;	

	 	body	=	List.rev	$7	}	}	

bdecl:	

			typ	ID	ASSIGN	expr	BUTEVERYTIME	LPAREN	expr	RPAREN	LBRACE	stmt_list	
RBRACE	

					{	(GlobalAssign($1,	$2,	$4),	{	typ	=	$1;	

			fname	=	"__"	^	$2;	

			formals	=	[($1,	$2)	;	($1,	"~"	^	$2)];	

			body	=	let	full_stmt_list	=	(List.rev	$10)	@	[Return	(Id($2))]	in	

										[If($7,	Block(full_stmt_list),	Return	(Id($2)))]		
(*(Id($2))*)	

								})		

					}	

formals_opt:	

				/*	nothing	*/	{	[]	}	

		|	formal_list			{	List.rev	$1	}	

formal_list:	

 117

				typ	ID																			{	[($1,$2)]	}	

		|	formal_list	COMMA	typ	ID	{	($3,$4)	::	$1	}	

dtyp:	

				INT	{	Int	}	

		|	DOUBLE	{	Double	}	

		|	STRING	{	String	}	

dim_list:	

				LSQUARE	RSQUARE		{	1	}	

		|	LSQUARE	RSQUARE	dim_list	{	1	+	$3	}	

atyp:	

				dtyp	dim_list	{	Array($1,	$2)	}	

typ:	

				dtyp	{	Simple($1)	}	

		|	VOID	{	Void	}	

		|	atyp	{	$1	}	

globalstmt_list:	

 118

				/*	nothing	*/				{	[]	}	

		|	globalstmt_list	globalstmt	{	$2	::	$1	}	

stmt_list:	

				/*	nothing	*/		{	[]	}	

		|	stmt_list	stmt	{	$2	::	$1	}	

stmt:	

				expr	SEMI	{	Expr	$1	}	

		|	RETURN	SEMI	{	Return	Noexpr	}	

		|	RETURN	expr	SEMI	{	Return	$2	}	

		|	LBRACE	stmt_list	RBRACE	{	Block(List.rev	$2)	}	

		|	IF	LPAREN	expr	RPAREN	stmt	%prec	NOELSE	{	If($3,	$5,	Block([]))	}	

		|	IF	LPAREN	expr	RPAREN	stmt	ELSE	stmt				{	If($3,	$5,	$7)	}	

		|	FOR	LPAREN	expr_opt	SEMI	expr	SEMI	expr_opt	RPAREN	stmt	

					{	For($3,	$5,	$7,	$9)	}	

		|	WHILE	LPAREN	expr	RPAREN	stmt	{	While($3,	$5)	}	

		|	typ	ID	SEMI	{Local($1,	$2)}	

globalstmt:	

				typ	ID	SEMI	{	Global($1,	$2)	}	

		|	typ	ID	ASSIGN	expr	SEMI	{	GlobalAssign($1,	$2,	$4)	}	

 119

expr_opt:	

				/*	nothing	*/	{	Noexpr	}	

		|	expr										{	$1	}	

index:	

				LINDEX	expr	RINDEX	{	$2	}	

val_list:	

				expr																{	[$1]	}	

		|	expr	COMMA	val_list	{	[$1]	@	$3	}	

simple_arr_literal:	

				LSQUARE	val_list	RSQUARE	{	$2	}	

expr:	

				INTLITERAL							{	IntLiteral($1)	}	

		|	DBLLITERAL							{	DblLiteral($1)	}	

		|	STRLITERAL							{	StrLiteral($1)	}	

		|	simple_arr_literal	{	ArrLiteral($1)	}	

		|	TILDE	ID							{	TildeOp($2)	}	

		|	ID															{	Id($1)	}	

		|	expr	PLUS			expr	{	Binop($1,	Add,			$3)	}	

 120

		|	expr	MINUS		expr	{	Binop($1,	Sub,			$3)	}	

		|	expr	TIMES		expr	{	Binop($1,	Mult,		$3)	}	

		|	expr	DIVIDE	expr	{	Binop($1,	Div,			$3)	}	

		|	expr	EXPONT	expr	{	Binop($1,	Exp,			$3)	}	

		|	expr	EQ					expr	{	Binop($1,	Equal,	$3)	}	

		|	expr	NEQ				expr	{	Binop($1,	Neq,			$3)	}	

		|	expr	LT					expr	{	Binop($1,	Less,		$3)	}	

		|	expr	LEQ				expr	{	Binop($1,	Leq,			$3)	}	

		|	expr	GT					expr	{	Binop($1,	Greater,	$3)	}	

		|	expr	GEQ				expr	{	Binop($1,	Geq,			$3)	}	

		|	expr	AND				expr	{	Binop($1,	And,			$3)	}	

		|	expr	OR					expr	{	Binop($1,	Or,				$3)	}	

		|	MINUS	expr	%prec	NEG	{	Unop(Neg,	$2)	}	

		|	NOT	expr									{	Unop(Not,	$2)	}	

		|	LENGTH	expr						{	Unop(Length,	$2)	}	

		|	ID	ASSIGN	expr			{	Assign($1,	$3)	}	

		|	ID	LPAREN	actuals_opt	RPAREN	{	Call($1,	$3)	}	

		|	LSQUARE	expr	OF	expr	RSQUARE	{	DefaultArrLiteral($2,	$4)	}	

		|	ID	LSQUARE	expr	RSQUARE	ASSIGN	expr	{	ArrayAssign($1,	[$3],	$6)	}	

		|	expr	index	{	Index($1,	[$2])	}	

	/*	|	ID	index	ASSIGN	expr		{	Assign(Index(Id($1),	$2),	$4)	}	*/	

		|	LPAREN	expr	RPAREN	{	$2	}	

		|	typ	ID	ASSIGN	expr	{LocalAssign($1,	$2,	$4)}	

 121

actuals_opt:	

				/*	nothing	*/	{	[]	}	

		|	actuals_list		{	List.rev	$1	}	

actuals_list:	

				expr																				{	[$1]	}	

		|	actuals_list	COMMA	expr	{	$3	::	$1	}	

Semant.ml
(*	Semantic	checking	for	the	DCL	compiler	*)	

module	A	=	Ast	

open	Ast	

open	Hashtbl	

open	Llvm	

module	StringMap	=	Map.Make(String)	

let	formals:(string,	A.typ)	Hashtbl.t	=	Hashtbl.create	100	

let	symbols:(string,	A.typ)	Hashtbl.t	=	Hashtbl.create	100		

let	globalsymbols:(string,	A.typ)	Hashtbl.t	=	Hashtbl.create	100		

 122

(*	Semantic	checking	of	a	program.	Returns	void	if	successful,	

			throws	an	exception	if	something	is	wrong.	

			Check	each	global	variable,	then	check	each	function	*)	

let	check	(globals,	functions)	=	

		(*	Raise	an	exception	if	the	given	list	has	a	duplicate	*)	

		let	report_duplicate	exceptf	list	=	

				let	rec	helper	=	function	

		n1	::	n2	::	_	when	n1	=	n2	->	raise	(Failure	(exceptf	n1))	

						|	_	::	t	->	helper	t	

						|	[]	->	()	

				in	helper	(List.sort	compare	list)	

		in	

		(*	Raise	an	exception	if	a	given	binding	is	to	a	void	type	*)	

		let	check_not_void	exceptf	=	function	

						(Void,	n)	->	raise	(Failure	(exceptf	n))	

				|	_	->	()	

		in	

 123

		let	report_local_duplicate	exceptf	s	=	

						if	Hashtbl.mem	symbols	s	then	raise	(Failure	(exceptf	s));	

		in	

		let	report_global_duplicate	exceptf	s	=	

						if	Hashtbl.mem	globalsymbols	s	then	raise	(Failure	(exceptf	s));	

		in	

		let	check_var_void	exceptf	t	n	=		

						if	t	==	Void	then	raise	(Failure	(exceptf	n))		

		in	

			

		(*	Raise	an	exception	of	the	given	rvalue	type	cannot	be	assigned	to	

					the	given	lvalue	type	*)	

		let	check_type	lvaluet	rvaluet	err	=	

					(*let	_	=	print_endline	(string_of_typ	lvaluet)	in	

					let	_	=	print_endline	(string_of_typ	rvaluet)	in	

					let	_	=	print_endline	(string_of_bool(string_of_typ	lvaluet	==	
string_of_typ	rvaluet))	in	

					let	_	=	print_int	(String.length	(string_of_typ	lvaluet))	in	

					let	_	=	print_int	(String.length	(string_of_typ	rvaluet))	in	

 124

					let	_	=	print_int	(String.compare	(string_of_typ	lvaluet)	
(string_of_typ	rvaluet))	in*)	

					(*	See	if	=	could	be	used	:O	*)	

					if	(String.compare	(string_of_typ	lvaluet)	(string_of_typ	
rvaluet))	==	0	then	lvaluet	else	raise	err		

		in	

				

		(****	Checking	Global	Variables	****)	

			let	type_of_identifier	s	=	

						try	Hashtbl.find	symbols	s	

						with	Not_found	->	try	Hashtbl.find	formals	s	

																								with	Not_found	->	try	Hashtbl.find	
globalsymbols	s	

																																										with	Not_found	->	raise	
(Failure	("undeclared	identifier	"	^	s))	

				in	

				(*	Return	the	type	of	an	expression	or	throw	an	exception	*)	

		(****	Checking	Functions	****)	

 125

		if	List.mem	"print"	(List.map	(fun	fd	->	fd.fname)	functions)	

		then	raise	(Failure	("function	print	may	not	be	defined"))	else	();	

			

		if	List.mem	"print_line"	(List.map	(fun	fd	->	fd.fname)	functions)	

		then	raise	(Failure	("function	print_line	may	not	be	defined"))	else	
();	

			

		if	List.mem	"read"	(List.map	(fun	fd	->	fd.fname)	functions)	

		then	raise	(Failure	("function	read	may	not	be	defined"))	else	();	

			

		if	List.mem	"write"	(List.map	(fun	fd	->	fd.fname)	functions)	

		then	raise	(Failure	("function	write	may	not	be	defined"))	else	();	

		report_duplicate	(fun	n	->	"duplicate	function	"	^	n)	

				(List.map	(fun	fd	->	fd.fname)	functions);	

		(*	Function	declaration	for	a	named	function	*)	

		let	built_in_decls	=			

				StringMap.add	"read"		

				{	typ	=	A.Simple(A.String);	fname	=	"read";	formals	=	
[(Simple(String),	"file_name")];	body	=	[]	}	

				(StringMap.singleton	"write"		

 126

				{	typ	=	A.Simple(A.Int);	fname	=	"write";	formals	=	
[(Simple(String),	"file_name")	;	(Simple(String),	"string_to_write")];	
body	=	[]	})	in	

		let	function_decls	=	List.fold_left	(fun	m	fd	->	StringMap.add	
fd.fname	fd	m)	

																									built_in_decls	functions	

		in	

		let	function_decl	s	=	try	StringMap.find	s	function_decls	

							with		

							Not_found	->	(let	_	=	print_string	s	in	raise	(Failure	
("unrecognized	function	"	^	s)))	

		in	

		let	_	=	function_decl	"main"	in	(*	Ensure	"main"	is	defined	*)	

		let	check_function	func	=	

				List.iter	(check_not_void	(fun	n	->	"illegal	void	formal	"	^	n	^	

 127

						"	in	"	^	func.fname))	func.formals;	

				report_duplicate	(fun	n	->	"duplicate	variable	"	^	n	^	"	in	"	^	
func.fname)	

						(List.map	snd	func.formals	

);	

				let	symbol	=	List.iter	(fun	(t,	n)	->	Hashtbl.add	formals	n	t)	

		func.formals	

				in	

				let	rec	expr	=	function	

	 				IntLiteral	_	->	Simple(Int)	

						|	DblLiteral	_	->	Simple(Double)	

						|	StrLiteral	_	->	Simple(String)	

						|	ArrLiteral(l)	->	let	first_type	=	expr	(List.hd	l)	in	

																									let	_	=	(match	first_type	with		

																																				Simple	_	->	()	

																																		|	_	->	raise	(Failure	("'"	^	
string_of_expr	(List.hd	l)	^	"'	is	not	simple	and	is	in	array"))	

)	in	

																									let	_	=	List.iter	(fun	x	->	if	
string_of_typ(expr	x)	==	string_of_typ	first_type	then	()	

 128

																																																					else	raise	
(Failure	("'"	^	string_of_expr	x	^	"'	doesn't	match	array's	type")))	l	
in	

																									Array((match	first_type	with	Simple(x)	->	x),	
1)	

						|	DefaultArrLiteral(e1,	e2)	->	if	string_of_typ	(expr	e1)	==	
string_of_typ(Simple(Int))	

																																					then	(match	expr	e2	with	

																																															Simple(t)	->	Array(t,	
1)	

																																													|	_	->	raise	(Failure	
("'"	^	string_of_expr	e2	^	"'	is	not	a	simple	type")))	

																																					else	raise	(Failure	("'"	^	
string_of_expr	e1	^	"'	is	not	an	integer"))	

						|	Index(a,	i)	->	if	string_of_typ(expr	(List.hd	i))	!=	
string_of_typ(Simple(Int))	

																							then	raise	(Failure("Array	index	('"	^	
string_of_expr	(List.hd	i)	^	"')	is	not	an	integer"))	

																							else		

																									let	type_of_entity	=	expr	a	in	

																									(match	type_of_entity	with	

																												Array(d,	_)	->	Simple(d)	

																										|	Simple(String)	->	Simple(String)	

																										|	_	->	raise	(Failure	("Entity	being	indexed	
('"	^	string_of_expr	a	^"')	cannot	be	array")))	

						|	TildeOp(e)	as	ex	->	type_of_identifier	e	

						|	Id	s	->	type_of_identifier	s	

						|	Binop(e1,	op,	e2)	as	e	->	let	t1	=	expr	e1	and	t2	=	expr	e2	in	

 129

	 (match	op	with	

								Equal	|	Neq	when	t1	=	t2	->	Simple(Int)	

								|		Add	|	Sub	|	Mult	|	Div	when	t1	=	Simple(Int)	&&	t2	=	
Simple(Int)	->	Simple(Int)	

	 						|	Less	|	Leq	|	Greater	|	Geq	when	t1	=	Simple(Int)	&&	t2	=	
Simple(Int)	->	Simple(Int)	

	 						|	And		|	Or	when	t1	=	Simple(Int)	&&	t2	=	Simple(Int)	->	
Simple(Int)	

								|	Exp	when	t1	=	Simple(Int)	&&	t2	=	Simple(Int)	->	
Simple(Double)	

								|	Add	|	Sub	|	Mult	|	Div	|	Exp	when	t1	=	Simple(Double)	&&	t2	
=	Simple(Double)	->	Simple(Double)	

								|	Less	|	Leq	|	Greater	|	Geq		

								when	t1	=	Simple(Double)	&&	t2	=	Simple(Double)	->	Simple(Int)	

								|	Add	when	t1	=	Simple(String)	&&	t2	=	Simple(String)	->	
Simple(String)		

								|	Less	|	Leq	|	Greater	|	Geq	when	t1	=	Simple(String)	&&	t2	=	
Simple(String)	->	Simple(Int)	

									

								|	_	->	raise	(Failure	("illegal	binary	operator	"	^	

														string_of_typ	t1	^	"	"	^	string_of_op	op	^	"	"	^	

														string_of_typ	t2	^	"	in	"	^	string_of_expr	e))	

)	

						|	Unop(op,	e)	as	ex	->	let	t	=	expr	e	in	

			(match	op	with	

 130

	 			Neg	when	t	=	Simple(Int)	->	Simple(Int)	

	 	|	Not	when	t	=	Simple(Int)	->	Simple(Int)	

			|	Neg	when	t	=	Simple(Double)	->	Simple(Double)	

			|	Length	when	t	=	Simple(String)	->	Simple(Int)	

			|	Length	when	t	=	Array(Double,	1)	->	Simple(Int)	

			|	Length	when	t	=	Array(String,	1)	->	Simple(Int)	

			|	Length	when	t	=	Array(Int,	1)	->	Simple(Int)	

			|	_	->	raise	(Failure	("illegal	unary	operator	"	^	string_of_uop	op	
^	

	 			 	 			string_of_typ	t	^	"	in	"	^	string_of_expr	ex)))	

						|	Noexpr	->	Void	

						|	Assign(var,	e)	as	ex	->	let	lt	=	type_of_identifier	var	

																																and	rt	=	expr	e	in	

								check_type	lt	rt	(Failure	("illegal	assignment	"	^	
string_of_typ	lt	^	

													"	=	"	^	string_of_typ	rt	^	"	in	"	^		

													string_of_expr	ex))	

	 		|	ArrayAssign(v,	i,	e)	as	ex	->	let	type_of_left_side	=		

																																						if	string_of_typ(expr	(List.hd	
i))	!=	string_of_typ(Simple(Int))	

																																						then	raise	(Failure("Array	
index	('"	^	string_of_expr	(List.hd	i)	^	"')	is	not	an	integer"))	

																																						else		

																																								let	type_of_entity	=	
type_of_identifier	v	in	

 131

																																								(match	type_of_entity	with	

																																											Array(d,	_)	->	Simple(d)	

																																									|	_	->	raise	(Failure	
("Entity	being	indexed	('"	^	v	^"')	cannot	be	array")))	in	

																																						let	type_of_right_side	=	expr	e	
in	

																																						check_type	type_of_left_side	
type_of_right_side		

																																						(Failure	("illegal	assignment	"	
^	string_of_typ	type_of_left_side	^	

																																																"	=	"	^	string_of_typ	
type_of_right_side	^	"	in	"	^		

																																																string_of_expr	ex))	

						|	LocalAssign	(t,	s,	e)	as	ex	->	check_var_void	(fun	n	->	
"illegal	void	local	"	^	n	^	

						"	in	"	^	func.fname)	t	s;	report_local_duplicate	(fun	n	->	
"duplicate	local	"	^	n	^	"	in	"	^	func.fname)	s;	

						let	lt	=	t	and	rt	=	expr	e	in	

								check_type	lt	rt	(Failure	("illegal	assignment	"	^	
string_of_typ	lt	^	

													"	=	"	^	string_of_typ	rt	^	"	in	"	^		

													string_of_expr	ex));	Hashtbl.add	symbols	s	t;	t	

						|	Call(fname,	actuals)	as	call	->		

									if	fname	=	"print"	||	fname	=	"print_line"		

									then	(if	List.length	actuals	==	1		

															then	let	arg_type	=	string_of_typ	(expr	(List.hd	
actuals))	in	

																				if	arg_type	=	string_of_typ	(Simple(Int))	||		

 132

																							arg_type	=	string_of_typ	(Simple(Double))	||	

																							arg_type	=	string_of_typ	(Simple(String))		

																				then	Void	

																				else	raise	(Failure	("illegal	actual	argument	
found	"	^	string_of_typ	(expr	(List.hd	actuals))	^	

																																																						"	in	"	^	
string_of_expr	(List.hd	actuals)))	

															else	raise	(Failure	("expecting	1	argument	in	"	^	
string_of_expr	call)))	

									else	(let	fd	=	function_decl	fname	in	

															if	List.length	actuals	!=	List.length	fd.formals	then	

																	raise	(Failure	("expecting	"	^	string_of_int	

																			(List.length	fd.formals)	^	"	arguments	in	"	^	
string_of_expr	call))	

															else	List.iter2	(fun	(ft,	_)	e	->	let	et	=	expr	e	in	

																							ignore	(check_type	ft	et	

																									(Failure	("illegal	actual	argument	found	"	^	
string_of_typ	et	^	

																									"	expected	"	^	string_of_typ	ft	^	"	in	"	^	
string_of_expr	e))))	

																						fd.formals	actuals;	

																				fd.typ)	

				in	

				let	check_int_expr	e	=	if	string_of_typ	(expr	e)	!=	string_of_typ	
(Simple(Int))	

 133

					then	raise	(Failure	("expected	int	expression	in	"	^	
string_of_expr	e))	

					else	()	in	

					

				let	globalstmt	=	function		

							Global(t,s)	as	ex	->	check_var_void	(fun	n	->	"illegal	void	
global	"	^	n)	t	s;		

							report_global_duplicate	(fun	n	->	"duplicate	global	"	^	n)	s;	

							Hashtbl.add	globalsymbols	s	t;	

					|	GlobalAssign(t,s,e)	as	ex	->	check_var_void	(fun	n	->	"illegal	
void	global	"	^	n)	t	s;		

					report_global_duplicate	(fun	n	->	"duplicate	global	"	^	n)	s;	

					let	lt	=	t	and	rt	=	expr	e	in	

								check_type	lt	rt	(Failure	("illegal	global	assignment	"	^	
string_of_typ	lt	^	

													"	=	"	^	string_of_typ	rt	^	"	in	"	^		

													string_of_globalstmt	ex));	Hashtbl.add	globalsymbols	s	t	
in		

								Hashtbl.clear	globalsymbols;	let	globalvars	=	List.map	
globalstmt	globals	in		

				(*	Verify	a	statement	or	throw	an	exception	*)	

				let	rec	stmt	=	function	

		Block	sl	->	let	rec	check_block	=	function	

 134

											[Return	_	as	s]	->	stmt	s	

									|	Return	_	::	_	->	raise	(Failure	"nothing	may	follow	a	
return")	

									|	Block	sl	::	ss	->	check_block	(sl	@	ss)	

									|	s	::	ss	->	stmt	s	;	check_block	ss	

									|	[]	->	()	

								in	check_block	sl	

						|	Expr	e	->	ignore	(expr	e)	

						|	Local	(t,	s)	as	ex	->	check_var_void	(fun	n	->	"illegal	void	
local	"	^	n	^	

						"	in	"	^	func.fname)	t	s;	report_local_duplicate	(fun	n	->	
"duplicate	local	"	^	n	^	"	in	"	^	func.fname)	s;	

						ignore(Hashtbl.add	symbols	s	t);	

						|	Return	e	->	let	t	=	expr	e	in	if	t	=	func.typ	then	()	else	

									raise	(Failure	("return	gives	"	^	string_of_typ	t	^	"	
expected	"	^	

																									string_of_typ	func.typ	^	"	in	"	^	
string_of_expr	e))	

												

						|	If(p,	b1,	b2)	->	check_int_expr	p;	stmt	b1;	stmt	b2	

						|	For(e1,	e2,	e3,	st)	->	ignore	(expr	e1);	check_int_expr	e2;	

																															ignore	(expr	e3);	stmt	st	

						|	While(p,	s)	->	check_int_expr	p;	stmt	s	

				in	

 135

				stmt	(Block	func.body)	

				

		in	

		List.iter	check_function	functions	

Ast.ml
(*	Abstract	Syntax	Tree	and	functions	for	printing	it	*)	

type	op	=	Add	|	Sub	|	Mult	|	Div	|	Equal	|	Neq	|	Less	|	Leq	|	Greater	
|	Geq	|	

										And	|	Or		|	Exp		

type	uop	=	Neg	|	Not	|	Tilde	|	Length	

type	dtyp	=	Int	|	Double	|	String	

type	typ	=	Simple	of	dtyp	|	Void	|	Array	of	dtyp	*	int	

type	bind	=	typ	*	string	

(*type	arr_literals	=		

				ArrLiteral	of	expr	list	

		|	MultiArrLiteral	of	arr_literals	list	*)	

type	expr	=	

		(*	arr_literals	

		|*)		

				IntLiteral	of	int	

		|	DblLiteral	of	float		

 136

		|	StrLiteral	of	string	

		|	ArrLiteral	of	expr	list		

		|	DefaultArrLiteral	of	expr	*	expr		

		|	Index	of	expr	*	expr	list	

		|	Id	of	string	

		|	Binop	of	expr	*	op	*	expr	

		|	Unop	of	uop	*	expr	

		|	TildeOp	of	string	

		|	Assign	of	string	*	expr	

		|	ArrayAssign	of	string	*	expr	list	*	expr	

		|	Call	of	string	*	expr	list	

		|	Noexpr	

		|	LocalAssign	of	typ	*	string	*	expr	

type	stmt	=	

				Block	of	stmt	list	

		|	Expr	of	expr	

		|	Return	of	expr	

		|	If	of	expr	*	stmt	*	stmt	

		|	For	of	expr	*	expr	*	expr	*	stmt	

		|	While	of	expr	*	stmt	

		|	Local	of	typ	*	string	

 137

type	globalstmt	=		

				Global	of	typ	*	string	

		|	GlobalAssign	of	typ	*	string	*	expr	

type	func_decl	=	{	

				typ	:	typ;	

				fname	:	string;	

				formals	:	bind	list;	

				body	:	stmt	list;	

		}	

		
type	program	=	globalstmt	list	*	func_decl	list	

(*	Pretty-printing	functions	*)	

let	string_of_op	=	function	

				Add	->	"+"	

		|	Sub	->	"-"	

		|	Mult	->	"*"	

		|	Div	->	"/"	

		|	Exp	->	"^"	

		|	Equal	->	"=="	

		|	Neq	->	"!="	

		|	Less	->	"<"	

 138

		|	Leq	->	"<="	

		|	Greater	->	">"	

		|	Geq	->	">="	

		|	And	->	"&&"	

		|	Or	->	"||"	

let	string_of_uop	=	function	

				Neg	->	"-"	

		|	Not	->	"!"	

		|	Tilde	->	"~"	

		|	Length	->	"#"	

let	convert_array	l	conversion	joiner	=	

				let	glob_item	original	data	=	original	^	(conversion	data)	^	
joiner	in	

				let	full	=	(List.fold_left	glob_item	""	l)	in	

				"["	^	String.sub	full	0	((String.length	full)	-	2)	^	"]"	

let	string_of_d_typ	=	function	

				Int	->	"int"	

		|	Double	->	"double"	

		|	String	->	"string"	

let	rec	repeat	c	=	function		

				0	->	""	

 139

		|	n	->	c	^	(repeat	c	(n	-	1))	

let	string_of_typ	=	function	

			Void	->	"void"	

		|		Simple(d)	->	string_of_d_typ	d	

		|	Array(d,	n)	->	string_of_d_typ	d	^	repeat	"[]"	n	

let	rec	string_of_expr	=	function	

				IntLiteral(l)	->	string_of_int	l	

		|	DblLiteral(l)	->	string_of_float	l	

		|	StrLiteral(l)	->	"\""	^	l	^	"\""	

		|	ArrLiteral(l)	->	convert_array	l	string_of_expr	",	"	

(*		|	MultiArrLiteral(l)	->	convert_array	l	string_of_expr	",\n"	*)	

		|	DefaultArrLiteral(e1,	e2)	->	"["	^	string_of_expr	e1	^	"	of	"	^	
string_of_expr	e2	^	"]"	

		|	Id(s)	->	s	

		|	Index(e,	l)	->	string_of_expr	e	^		

																			(*convert_array	l	(fun	e	->	"["	^	string_of_expr	e	
^	"]")	""*)	

																			"{|"	^	string_of_expr	(List.hd	l)	^	"|}"	

		|	Binop(e1,	o,	e2)	->	

						string_of_expr	e1	^	"	"	^	string_of_op	o	^	"	"	^	string_of_expr	
e2	

		|	Unop(o,	e)	->	string_of_uop	o	^	string_of_expr	e	

		|	TildeOp(id)	->	"~"	^	id	

 140

		|	ArrayAssign(v,	l,	e)	->	v	^	"["	^	string_of_expr	(List.hd	l)	^	"]"	
^	"	=	"	^	string_of_expr	e	

		|	Assign(v,	e)	->	v	^	"	=	"	^	string_of_expr	e	

		|	Call(f,	el)	->	

						f	^	"("	^	String.concat	",	"	(List.map	string_of_expr	el)	^	")"	

		|	Noexpr	->	""	

		|	LocalAssign(t,	s,	e)	->	string_of_typ	t	^	"	"	^	s	^	"	=	"	^	
string_of_expr	e		

let	rec	string_of_stmt	=	function	

				Block(stmts)	->	

						"{\n"	^	String.concat	""	(List.map	string_of_stmt	stmts)	^	"}\n"	

		|	Expr(expr)	->	string_of_expr	expr	^	";\n";	

		|	Return(expr)	->	"return	"	^	string_of_expr	expr	^	";\n";	

		|	If(e,	s,	Block([]))	->	"if	("	^	string_of_expr	e	^	")\n"	^	
string_of_stmt	s	

		|	If(e,	s1,	s2)	->		"if	("	^	string_of_expr	e	^	")\n"	^	

						string_of_stmt	s1	^	"else\n"	^	string_of_stmt	s2	

		|	For(e1,	e2,	e3,	s)	->	

						"for	("	^	string_of_expr	e1		^	"	;	"	^	string_of_expr	e2	^	"	;	"	
^	

						string_of_expr	e3		^	")	"	^	string_of_stmt	s	

		|	While(e,	s)	->	"while	("	^	string_of_expr	e	^	")	"	^	
string_of_stmt	s	

		|	Local(t,	s)	->	string_of_typ	t	^	"	"	^	s	^	";\n"	

 141

let	string_of_globalstmt	=	function		

				Global(t,s)	->	string_of_typ	t	^	"	"	^	s	^	";\n"	

		|	GlobalAssign(t,s,e)	->	string_of_typ	t	^	"	"	^	s	^	"	=	"	^	
string_of_expr	e	^	";\n"	

let	string_of_fdecl	fdecl	=	

		string_of_typ	fdecl.typ	^	"	"	^	

		fdecl.fname	^	"("	^	String.concat	",	"	(List.map	snd	fdecl.formals)	
^	

		")\n{\n"	^	

		String.concat	""	(List.map	string_of_stmt	fdecl.body)	^	

		"}\n"	

let	string_of_program	(vars,	funcs)	=	

		String.concat	""	(List.map	string_of_globalstmt	vars)	^	"\n"	^	

		String.concat	"\n"	(List.map	string_of_fdecl	funcs)	

Codegen.ml
(*	Code	generation:	translate	takes	a	semantically	checked	AST	and	

produces	LLVM	IR	

LLVM	tutorial:	Make	sure	to	read	the	OCaml	version	of	the	tutorial	

http://llvm.org/docs/tutorial/index.html	

 142

Detailed	documentation	on	the	OCaml	LLVM	library:	

http://llvm.moe/	

http://llvm.moe/ocaml/	

This	is	for	DCL.	

*)	

module	L	=	Llvm	

module	A	=	Ast	

open	Printf	

open	List		

open	Hashtbl	

open	Llvm		

module	StringMap	=	Map.Make(String)	

let	local_vars:(string,	llvalue)	Hashtbl.t	=	Hashtbl.create	100		

let	global_vars:(string,	llvalue)	Hashtbl.t	=	Hashtbl.create	100	

 143

let	expr_store_local:(string,	llvalue)	Hashtbl.t	=	Hashtbl.create	100	

let	expr_store_global:(string,	llvalue)	Hashtbl.t	=	Hashtbl.create	100	

let	translate	(globals,	functions)	=	

		let	context	=	L.global_context	()	in	

		let	the_module	=	L.create_module	context	"DCL"	in		

		let	globalbuilder	=	builder	context		

		and	i32_t		=	L.i32_type				context	

		and	i8_t			=	L.i8_type					context	

		and	f64_t		=	L.double_type	context	

		and	ptr_t	=	L.pointer_type	(L.i8_type	(context))		

		and	void_t	=	L.void_type			context	in	

		let	rec	int_range	=	function	

						0	->	[]	

				|	1	->	[0]	

				|	n	->	int_range	(n	-	1)	@	[n	-	1]	in	

		let	rec	ltype_of_typ	=	function	

						A.Simple(A.Int)	->	i32_t	

				|	A.Simple(A.String)	->	L.struct_type	context	[|	i32_t	;	
L.pointer_type	i8_t	|]	

 144

				|	A.Simple(A.Double)	->	f64_t	

				|	A.Array(d,	_)	->		L.struct_type	context	[|	i32_t	;	
L.pointer_type	(ltype_of_typ	(A.Simple(d)))	|]	

				|	A.Void	->	void_t	in	

		let	default	=	function		

				A.Simple(A.Int)				->	L.const_int										i32_t	0		

		|	A.Simple(A.Double)	->	L.const_float								f64_t	0.	

		|	A.Simple(A.String)	->	L.const_null	(L.struct_type	context	[|	i32_t	
;	L.pointer_type	i8_t	|])	

		|	A.Array(d,	_)						->	L.const_null	(L.struct_type	context	[|	i32_t	
;	L.pointer_type	(ltype_of_typ	(A.Simple(d)))	|])	in	

		(*	Declare	each	global	variable;	remember	its	value	in	a	map	*)	

		let	lookupglobal	n	=	try	Hashtbl.find	global_vars	n		

																							with	Not_found	->	raise	(Failure	("undeclared	
id:	"	^	n))	

				in	

		(*	Declare	printf(),	which	the	print	built-in	function	will	call	*)	

 145

		let	printf_t	=	L.var_arg_function_type	i32_t	[|	L.pointer_type	i8_t	
|]	in	

		let	printf_func	=	L.declare_function	"printf"	printf_t	the_module	in	

		(*	String	concatenation	*)	

		let	strcmp_t	=	L.function_type	i32_t	[|	L.pointer_type	i8_t	;	
L.pointer_type	i8_t	|]	in	

		let	strcmp_func	=	L.declare_function	"strcmp"	strcmp_t	the_module	in	

			

		(*	Exponent	*)	

		let	expint_t	=	L.function_type	f64_t	[|	i32_t	;	i32_t	|]	in	

		let	expint_func	=	L.declare_function	"__exp_int"	expint_t	the_module	
in	

		let	expdbl_t	=	L.function_type	f64_t	[|	f64_t	;	f64_t	|]	in	

		let	expdbl_func	=	L.declare_function	"__exp_dbl"	expdbl_t	the_module	
in	

		(*	File	I/O	*)	

		let	read_t	=	L.function_type	(ltype_of_typ	(A.Simple(A.String)))	[|	
ltype_of_typ	(A.Simple(A.String))	|]	in	

		let	read_func	=	L.declare_function	"read"	read_t	the_module	in	

 146

		let	write_t	=	L.function_type	i32_t	[|	ltype_of_typ	
(A.Simple(A.String))	;	ltype_of_typ	(A.Simple(A.String))	|]	in	

		let	write_func	=	L.declare_function	"write"	write_t	the_module	in	

		(*	Define	each	function	(arguments	and	return	type)	so	we	can	call	
it	*)	

		let	function_decls	=		

				let	function_decl	m	fdecl	=	

						let	name	=	fdecl.A.fname	

						and	formal_types	=	

		Array.of_list	(List.map	(fun	(t,_)	->	ltype_of_typ	t)	
fdecl.A.formals)	

						in	let	ftype	=	L.function_type	(ltype_of_typ	fdecl.A.typ)	
formal_types	in	

						StringMap.add	name	(L.define_function	name	ftype	the_module,	
fdecl)	m	in	

				List.fold_left	function_decl	StringMap.empty	functions	in	

			

		(*	Fill	in	the	body	of	the	given	function	*)	

		let	build_function_body	fdecl	=	

				Hashtbl.clear	local_vars;	

				let	(the_function,	_)	=	StringMap.find	fdecl.A.fname	
function_decls	in	

				let	builder	=	L.builder_at_end	context	(L.entry_block	
the_function)	in	

 147

				let	int_format_str	=	L.build_global_stringptr	"%d"	"fmt"	builder	
in	

				let	dbl_format_str	=	L.build_global_stringptr	"%f"	"fmt"	builder	
in	

				let	str_format_str	=	L.build_global_stringptr	"%s"	"fmt"	builder	
in	

				let	int_format_str_nl	=	L.build_global_stringptr	"%d\n"	"fmt"	
builder	in	

				let	dbl_format_str_nl	=	L.build_global_stringptr	"%f\n"	"fmt"	
builder	in	

				let	str_format_str_nl	=	L.build_global_stringptr	"%s\n"	"fmt"	
builder	in	

				(*	Construct	the	function's	"locals":	formal	arguments	and	locally	

							declared	variables.		Allocate	each	on	the	stack,	initialize	
their	

							value,	if	appropriate,	and	remember	their	values	in	the	
"locals"	map	*)	

				(*	Return	the	value	for	a	variable	or	formal	argument	*)	

				let	lookup	n	=	try	Hashtbl.find	local_vars	n		

																			with	Not_found	->	try	Hashtbl.find	global_vars	n		

																																					with	Not_found	->	raise	(Failure	
("undeclared	id:	"	^	n))	

 148

				in	

				let	findValue	s	=	if	Hashtbl.mem	expr_store_local	s	then	
Hashtbl.find	expr_store_local	s	

																		else	Hashtbl.find	expr_store_global	s	

				in		

				let	build_string_from_code	e'	=	let	size	=	L.operand	(L.size_of	
(L.type_of	e'))	1	in	

																																				let	dest	=	L.build_array_malloc	
i8_t	size	"tmp"	builder	in	

																																				List.iter	(fun	x	->		

																																						let	more	=	(L.build_gep	dest		[|	
L.const_int	i32_t	x	|]	"tmp2"	builder)	in	

																																						let	x	=	L.build_extractvalue	e'	
x	"tmp2"	builder	in	

																																						ignore	(L.build_store	x	more	
builder)	

)	(int_range	((match	
(L.int64_of_const	size)	with	Some	i	->	Int64.to_int	i)	-	1))	;	

																																				L.build_in_bounds_gep	dest	[|	
L.const_int	i32_t	0	|]	"whatever"	builder	in	

 149

				let	clean_up_string_stuff	dest	=	L.build_free	dest	builder	in	

				(*	Construct	code	for	an	expression;	return	its	value	*)	

				let	rec	expr	builder	=	function	

								A.IntLiteral	i	->	L.const_int	i32_t	i	

						|	A.DblLiteral	d	->	L.const_float	f64_t	d	

						|	A.StrLiteral	s	->	let	llvm_string	=	L.const_string	context	s	
in	

																										let	size	=	String.length	s	in	

																										let	new_array	=	L.build_array_malloc	i8_t	
(L.const_int	i32_t	(size	+	1))	"tmp"	builder	in	

																										List.iter	(fun	x	->		

																												let	more	=	(L.build_gep	new_array		[|	
L.const_int	i32_t	x	|]	"tmp2"	builder)	in	

																												let	y	=	if	x	!=	size		

																																				then	L.build_extractvalue	
llvm_string	x	"tmp2"	builder	

																																				else	L.const_int	i8_t	0	in	

																												ignore	(L.build_store	y	more	builder)	

)	(int_range	(size	+	1))	;	

																										let	new_literal	=	L.build_malloc	
(ltype_of_typ	(A.Simple(A.String)))	"arr_literal"	builder	in	

																										let	first_store	=	L.build_struct_gep	
new_literal	0	"first"	builder	in	

																										let	second_store	=	L.build_struct_gep	
new_literal	1	"second"	builder	in	

 150

																										let	store_it	=	L.build_store	(L.const_int	
i32_t	size)	first_store	builder	in	

																										let	store_it_again	=	L.build_store	new_array	
second_store	builder	in	

																										let	actual_literal	=	L.build_load	
new_literal	"actual_arr_literal"	builder	in	

																										actual_literal	

						|	A.Noexpr	->	L.const_int	i32_t	0	

						|	A.Id	s	->	L.build_load	(lookup	s)	s	builder	

						|	A.ArrLiteral(l)	->	let	size	=	L.const_int	i32_t	(List.length	
l)	in	

																											let	all	=	List.map	(fun	e	->	expr	builder	
e)	l	in	

																											let	new_array	=	L.build_array_malloc	
(L.type_of	(List.hd	all))	size	"tmp"	builder	in	

																											List.iter	(fun	x	->	

																														let	more	=	(L.build_gep	new_array	[|	
L.const_int	i32_t	x	|]	"tmp2"	builder)	in	

																														let	intermediate	=	List.nth	all	x	in	

																														ignore	(L.build_store	intermediate	more	
builder)	

)	(int_range	(List.length	l))	;	

																											let	type_of_new_literal	=	L.struct_type	
context	[|	i32_t	;	L.pointer_type	(L.type_of	(List.hd	all))	|]	in	

																											let	new_literal	=	L.build_malloc	
type_of_new_literal	"arr_literal"	builder	in	

																											let	first_store	=	L.build_struct_gep	
new_literal	0	"first"	builder	in	

 151

																											let	second_store	=	L.build_struct_gep	
new_literal	1	"second"	builder	in	

																											let	store_it	=	L.build_store	size	
first_store	builder	in	

																											let	store_it_again	=	L.build_store	
new_array	second_store	builder	in	

																											let	actual_literal	=	L.build_load	
new_literal	"actual_arr_literal"	builder	in	

																											actual_literal	

						|	A.DefaultArrLiteral(e1,	e2)	->	let	size	=	expr	builder	e1	in	

																																							let	first	=	expr	builder	e2	in	

																																							let	d	=	if	L.type_of	first	==	
ltype_of_typ	(A.Simple(A.Int))		

																																															then	A.Int	

																																															else	if	L.type_of	first	
==	ltype_of_typ	(A.Simple(A.Double))		

																																																				then	A.Double	

																																																				else	A.String	in	

																																							let	new_array	=	
L.build_array_malloc	(ltype_of_typ	(A.Simple(d)))	size	"tmp"	builder	
in	

																																							let	start	=	L.build_alloca	
i32_t	"start"	builder	in		

																																							let	store	=	L.build_store	
(L.const_int	i32_t	1)	start	builder	in	

																																							let	first_pointer_in_array	=	
L.build_gep	new_array	[|	(L.const_int	i32_t	0)	|]	"gep_ptr_in_array"	
builder	in	

																																							let	first_store_in_array	=	
L.build_store	first	first_pointer_in_array	builder	in	

 152

																																							let	position	=	L.block_parent	
(L.insertion_block	builder)	in	

																																							let	continue_basic_block	=	
L.append_block	context	"continue"	position	in	

																																							ignore	(L.build_br	
continue_basic_block	builder)	;	

																																							let	iteration_basic_block	=	
L.append_block	context	"iterate"	position	in	

																																							let	end_builder	=	
L.builder_at_end	context	iteration_basic_block	in	

																																							let	cur_value	=	L.build_load	
start	"cur_value"	end_builder	in	

																																							let	pointer_in_array	=	
L.build_gep	new_array	[|	cur_value	|]	"gep_ptr_in_array"	end_builder	
in	

																																							let	store_in_array	=	
L.build_store	(expr	end_builder	e2)	pointer_in_array	end_builder	in	

																																							let	update	=	L.build_add	
cur_value	(L.const_int	i32_t	1)	"tmp"	end_builder	in	

																																							let	new_store	=	L.build_store	
update	start	end_builder	in	

																																							let	loop	=	L.build_br	
continue_basic_block	end_builder	in	

																																							L.block_terminator	
(L.insertion_block	end_builder)	;	

																																							let	continue_builder	=	
L.builder_at_end	context	continue_basic_block	in	

																																							let	cur_value	=	L.build_load	
start	"cur_value"	continue_builder	in	

																																							let	continue_value	=	
L.build_icmp	L.Icmp.Slt	cur_value	size	"tmp"	continue_builder	in	

 153

																																							let	merge_basic_block	=	
L.append_block	context	"merge"	position	in	

																																							ignore	(L.build_cond_br	
continue_value	iteration_basic_block	merge_basic_block	
continue_builder)	;	

																																							L.builder_at_end	context	
merge_basic_block	;	

																																							L.position_at_end	
merge_basic_block	builder	;	

																																							let	new_literal	=	
L.build_malloc	(ltype_of_typ	(A.Array(d,	1)))	"arr_literal"	builder	in	

																																							let	first_store	=	
L.build_struct_gep	new_literal	0	"first"	builder	in	

																																							let	second_store	=	
L.build_struct_gep	new_literal	1	"second"	builder	in		

																																							let	store_it	=	L.build_store	
size	first_store	builder	in	

																																							let	store_it_again	=	
L.build_store	new_array	second_store	builder	in	

																																							let	actual_literal	=	
L.build_load	new_literal	"actual_arr_literal"	builder	in	

																																							actual_literal	

						|	A.Index(a,	i)	->	let	a'	=	expr	builder	a	in		

																									let	i'	=	expr	builder	(List.hd	i)	in	

																									let	extract_array	=	L.build_extractvalue	a'	1	
"extract_ptr"	builder	in	

																									let	extract_value	=	L.build_gep	extract_array	
[|	i'	|]	"extract_value"	builder	in	

																									if	L.type_of	extract_array	==	L.pointer_type	
i8_t	

 154

																									then	let	first_value	=	L.build_load	
extract_value	"value"	builder	in	

																														let	new_string	=	L.build_array_malloc	
i8_t	(L.const_int	i32_t	2)	"tmp"	builder	in	

																														let	more	=	L.build_gep	new_string	[|	
L.const_int	i32_t	0	|]	"tmp2"	builder	in	

																														let	store_it	=	L.build_store	first_value	
more	builder	in	

																														let	more	=	L.build_gep	new_string	[|	
L.const_int	i32_t	1	|]	"tmp2"	builder	in	

																														let	store_it_again	=	L.build_store	
(L.const_int	i8_t	0)	more	builder	in	

																														let	new_literal	=	L.build_malloc	
(ltype_of_typ	(A.Simple(A.String)))	"arr_literal"	builder	in	

																														let	first_store	=	L.build_struct_gep	
new_literal	0	"first"	builder	in	

																														let	second_store	=	L.build_struct_gep	
new_literal	1	"second"	builder	in	

																														let	store_it	=	L.build_store	
(L.const_int	i32_t	1)	first_store	builder	in	

																														let	store_it_again	=	L.build_store	
new_string	second_store	builder	in	

																														let	actual_literal	=	L.build_load	
new_literal	"actual_arr_literal"	builder	in	

																														actual_literal	

																									else	L.build_load	extract_value	"value"	
builder	

						|	A.Binop	(e1,	op,	e2)	->	

				let	e1'	=	expr	builder	e1	

 155

				and	e2'	=	expr	builder	e2	in	

				(match	op	with	

						A.Add							->	if						L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Int))				then	L.build_add		e1'	e2'	"tmp"	builder	

																					else	if	L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Double))	then	L.build_fadd	e1'	e2'	"tmp"	builder	

																					else		

																										let	first_size	=	L.build_extractvalue	e1'	0	
"extract_size"	builder	in	

																										let	second_size	=	L.build_extractvalue	e2'	0	
"extract_size"	builder	in				

																										let	first_array	=	L.build_extractvalue	e1'	1	
"extract_size"	builder	in					

																										let	second_array	=	L.build_extractvalue	e2'	
1	"extract_size"	builder	in																														

																										let	total_size	=	L.build_add	first_size	
second_size	"tmp"	builder	in	

																										let	new_array	=	L.build_array_malloc	i8_t	
(L.build_add	total_size	(L.const_int	i32_t	1)	"tmp"	builder)	"tmp"	
builder	in	

																										let	start	=	L.build_alloca	i32_t	"start"	
builder	in		

																										let	store	=	L.build_store	(L.const_int	i32_t	
0)	start	builder	in	

																										let	position	=	L.block_parent	
(L.insertion_block	builder)	in	

																										let	continue_basic_block	=	L.append_block	
context	"continue"	position	in	

																										ignore	(L.build_br	continue_basic_block	
builder)	;	

 156

																										let	iteration_basic_block	=	L.append_block	
context	"iterate"	position	in	

																										let	end_builder	=	L.builder_at_end	context	
iteration_basic_block	in	

																										let	cur_value	=	L.build_load	start	
"cur_value"	end_builder	in	

																										let	pointer_in_array	=	L.build_gep	new_array	
[|	cur_value	|]	"gep_ptr_in_array"	end_builder	in	

																										let	position_for_value	=	L.build_gep	
first_array	[|	cur_value	|]	"gep_ptr_in_first_array"	end_builder	in	

																										let	value_to_store	=	L.build_load	
position_for_value	"tmp"	end_builder	in	

																										let	store_in_array	=	L.build_store	
value_to_store	pointer_in_array	end_builder	in	

																										let	update	=	L.build_add	cur_value	
(L.const_int	i32_t	1)	"tmp"	end_builder	in	

																										let	new_store	=	L.build_store	update	start	
end_builder	in	

																										let	loop	=	L.build_br	continue_basic_block	
end_builder	in	

																										L.block_terminator	(L.insertion_block	
end_builder)	;	

																										let	continue_builder	=	L.builder_at_end	
context	continue_basic_block	in	

																										let	cur_value	=	L.build_load	start	
"cur_value"	continue_builder	in	

																										let	continue_value	=	L.build_icmp	L.Icmp.Slt	
cur_value	first_size	"tmp"	continue_builder	in	

																										let	merge_basic_block	=	L.append_block	
context	"merge"	position	in	

 157

																										ignore	(L.build_cond_br	continue_value	
iteration_basic_block	merge_basic_block	continue_builder)	;	

																										L.builder_at_end	context	merge_basic_block	;	

																										L.position_at_end	merge_basic_block	
builder	;	

																										let	store	=	L.build_store	(L.const_int	i32_t	
0)	start	builder	in	

																										let	position	=	L.block_parent	
(L.insertion_block	builder)	in	

																										let	continue_basic_block	=	L.append_block	
context	"continuetwo"	position	in	

																										ignore	(L.build_br	continue_basic_block	
builder)	;	

																										let	iteration_basic_block	=	L.append_block	
context	"iteratetwo"	position	in	

																										let	end_builder	=	L.builder_at_end	context	
iteration_basic_block	in	

																										let	cur_value	=	L.build_load	start	
"cur_value"	end_builder	in	

																										let	pointer_in_array	=	L.build_gep	new_array	
[|	(L.build_add	cur_value	first_size	"tmp"	end_builder)	|]	
"gep_ptr_in_array"	end_builder	in	

																										let	position_for_value	=	L.build_gep	
second_array	[|	cur_value	|]	"gep_ptr_in_first_array"	end_builder	in	

																										let	value_to_store	=	L.build_load	
position_for_value	"tmp"	end_builder	in	

																										let	store_in_array	=	L.build_store	
value_to_store	pointer_in_array	end_builder	in	

																										let	update	=	L.build_add	cur_value	
(L.const_int	i32_t	1)	"tmp"	end_builder	in	

 158

																										let	new_store	=	L.build_store	update	start	
end_builder	in	

																										let	loop	=	L.build_br	continue_basic_block	
end_builder	in	

																										L.block_terminator	(L.insertion_block	
end_builder)	;	

																										let	continue_builder	=	L.builder_at_end	
context	continue_basic_block	in	

																										let	cur_value	=	L.build_load	start	
"cur_value"	continue_builder	in	

																										let	continue_value	=	L.build_icmp	L.Icmp.Slt	
cur_value	second_size	"tmp"	continue_builder	in	

																										let	merge_basic_block	=	L.append_block	
context	"mergetwo"	position	in	

																										ignore	(L.build_cond_br	continue_value	
iteration_basic_block	merge_basic_block	continue_builder)	;	

																										L.builder_at_end	context	merge_basic_block	;	

																										L.position_at_end	merge_basic_block	
builder	;	

																										let	pointer_in_array	=	L.build_gep	new_array	
[|	(L.build_add	first_size	second_size	"tmp"	builder)	|]	
"gep_ptr_in_array"	builder	in	

																										let	store_in_array	=	L.build_store	
(L.const_int	i8_t	0)	pointer_in_array	builder	in	

																										let	new_literal	=	L.build_malloc	
(ltype_of_typ	(A.Simple(A.String)))	"str_literal"	builder	in	

																										let	first_store	=	L.build_struct_gep	
new_literal	0	"first"	builder	in	

																										let	second_store	=	L.build_struct_gep	
new_literal	1	"second"	builder	in		

 159

																										let	store_it	=	L.build_store	total_size	
first_store	builder	in	

																										let	store_it_again	=	L.build_store	new_array	
second_store	builder	in	

																										let	actual_literal	=	L.build_load	
new_literal	"actual_str_literal"	builder	in	

																										actual_literal	

				|	A.Sub							->	(if	L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Int))	then	L.build_sub	else	L.build_fsub)	e1'	e2'	"tmp"	
builder	

				|	A.Mult						->	(if	L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Int))	then	L.build_mul	else	L.build_fmul)	e1'	e2'	"tmp"	
builder	

				|	A.Div							->	(if	L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Int))	then	L.build_sdiv	else	L.build_fdiv)	e1'	e2'	"tmp"	
builder	

				|	A.Exp							->	if			L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Int))		

																					then	L.build_call	expint_func	[|	e1'	;	e2'	|]	
"tmp"	builder	

																					else	L.build_call	expdbl_func	[|	e1'	;	e2'	|]	
"tmp"	builder	

				|	A.And							->	L.build_and	e1'	e2'	"tmp"	builder	

				|	A.Or								->	L.build_or	e1'	e2'	"tmp"	builder	

				|	A.Equal					->	let	result	=	(

																					if						L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Int))				then	L.build_icmp	L.Icmp.Eq	e1'	e2'	"tmp"	builder	

																					else	if	L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Double))	then	L.build_fcmp	L.Fcmp.Oeq	e1'	e2'	"tmp"	
builder	

																					else		

 160

																							let	str_ptr_e1'	=	L.build_extractvalue	e1'	1	
"extract_char_array"	builder	in	

																							let	str_ptr_e2'	=	L.build_extractvalue	e2'	1	
"extract_char_array"	builder	in	

																							let	result	=	L.build_call	strcmp_func	[|	
str_ptr_e1'	;	str_ptr_e2'	|]	"tmp"	builder	in	

																							L.build_icmp	L.Icmp.Eq	result	(L.const_int	
i32_t	0)	"tmp"	builder)	in	

																					L.build_mul	(L.build_intcast	result	i32_t	
"convert"	builder)	(L.const_int	i32_t	(-1))	"tmp"	builder	

				|	A.Neq							->	let	result	=	(

																					if						L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Int))				then	L.build_icmp	L.Icmp.Ne	e1'	e2'	"tmp"	builder	

																					else	if	L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Double))	then	L.build_fcmp	L.Fcmp.One	e1'	e2'	"tmp"	
builder	

																					else		

																							let	str_ptr_e1'	=	L.build_extractvalue	e1'	1	
"extract_char_array"	builder	in	

																							let	str_ptr_e2'	=	L.build_extractvalue	e2'	1	
"extract_char_array"	builder	in	

																							let	result	=	L.build_call	strcmp_func	[|	
str_ptr_e1'	;	str_ptr_e2'	|]	"tmp"	builder	in	

																							let	value	=	L.build_icmp	L.Icmp.Ne	result	
(L.const_int	i32_t	0)	"tmp"	builder	in	

																							value)	in	

																					L.build_mul	(L.build_intcast	result	i32_t	
"convert"	builder)	(L.const_int	i32_t	(-1))	"tmp"	builder	

				|	A.Less						->	let	result	=	(

 161

																					if						L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Int))				then				L.build_icmp	L.Icmp.Slt	e1'	e2'	"tmp"	
builder	

																					else	if	L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Double))	then	L.build_fcmp	L.Fcmp.Olt	e1'	e2'	"tmp"	
builder	

																					else		

																							let	str_ptr_e1'	=	L.build_extractvalue	e1'	1	
"extract_char_array"	builder	in	

																							let	str_ptr_e2'	=	L.build_extractvalue	e2'	1	
"extract_char_array"	builder	in	

																							let	result	=	L.build_call	strcmp_func	[|	
str_ptr_e1'	;	str_ptr_e2'	|]	"tmp"	builder	in	

																							L.build_icmp	L.Icmp.Slt	result	(L.const_int	
i32_t	0)	"tmp"	builder)	in	

																					L.build_mul	(L.build_intcast	result	i32_t	
"convert"	builder)	(L.const_int	i32_t	(-1))	"tmp"	builder	

				|	A.Leq							->	let	result	=	(

																					if						L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Int))				then	L.build_icmp	L.Icmp.Sle	e1'	e2'	"tmp"	
builder	

																					else	if	L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Double))	then	L.build_fcmp	L.Fcmp.Ole	e1'	e2'	"tmp"	
builder	

																					else		

																							let	str_ptr_e1'	=	L.build_extractvalue	e1'	1	
"extract_char_array"	builder	in	

																							let	str_ptr_e2'	=	L.build_extractvalue	e2'	1	
"extract_char_array"	builder	in	

																							let	result	=	L.build_call	strcmp_func	[|	
str_ptr_e1'	;	str_ptr_e2'	|]	"tmp"	builder	in	

 162

																							L.build_icmp	L.Icmp.Sle	result	(L.const_int	
i32_t	0)	"tmp"	builder)	in	

																					L.build_mul	(L.build_intcast	result	i32_t	
"convert"	builder)	(L.const_int	i32_t	(-1))	"tmp"	builder	

				|	A.Greater			->	let	result	=	(

																					if						L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Int))				then	L.build_icmp	L.Icmp.Sgt	e1'	e2'	"tmp"	
builder	

																					else	if	L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Double))	then	L.build_fcmp	L.Fcmp.Ogt	e1'	e2'	"tmp"	
builder	

																					else		

																							let	str_ptr_e1'	=	L.build_extractvalue	e1'	1	
"extract_char_array"	builder	in	

																							let	str_ptr_e2'	=	L.build_extractvalue	e2'	1	
"extract_char_array"	builder	in	

																							let	result	=	L.build_call	strcmp_func	[|	
str_ptr_e1'	;	str_ptr_e2'	|]	"tmp"	builder	in	

																							L.build_icmp	L.Icmp.Sgt	result	(L.const_int	
i32_t	0)	"tmp"	builder)	in	

																					L.build_mul	(L.build_intcast	result	i32_t	
"convert"	builder)	(L.const_int	i32_t	(-1))	"tmp"	builder	

				|	A.Geq							->	let	result	=	(

																					if						L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Int))				then	L.build_icmp	L.Icmp.Sge	e1'	e2'	"tmp"	
builder	

																					else	if	L.type_of	e1'	==	ltype_of_typ	
(A.Simple(A.Double))	then	L.build_fcmp	L.Fcmp.Oge	e1'	e2'	"tmp"	
builder	

																					else		

 163

																							let	str_ptr_e1'	=	L.build_extractvalue	e1'	1	
"extract_char_array"	builder	in	

																							let	str_ptr_e2'	=	L.build_extractvalue	e2'	1	
"extract_char_array"	builder	in	

																							let	result	=	L.build_call	strcmp_func	[|	
str_ptr_e1'	;	str_ptr_e2'	|]	"tmp"	builder	in	

																							L.build_icmp	L.Icmp.Sge	result	(L.const_int	
i32_t	0)	"tmp"	builder)	in	

																					L.build_mul	(L.build_intcast	result	i32_t	
"convert"	builder)	(L.const_int	i32_t	(-1))	"tmp"	builder	

)	

						|	A.TildeOp(id)	->	let	x	=	"~"	^	id	in	L.build_load	(lookup	(x))	
x	builder												

						|	A.Unop(op,	e)	->	

				let	e'	=	expr	builder	e	in	

				(match	op	with	

												A.Neg					->	if	L.type_of	e'	==	ltype_of_typ	
(A.Simple(A.Int))	then	L.build_neg	e'	"tmp"	builder	else	L.build_fneg	
e'	"tmp"	builder	

										|	A.Not					->	L.build_not	e'	"tmp"	builder	

										|	A.Length		->	L.build_extractvalue	e'	0	"extract_size"	
builder)	

						|	A.Assign	(s,	e)	->	let	e'	=	expr	builder	e	in	

																					ignore	(L.build_store	e'	(lookup	s)	builder);	
ignore	(Hashtbl.add	expr_store_local	s	e');	e'	

						|	A.LocalAssign	(t,	s,	e)	->	let	local_var	=	L.build_alloca	
(ltype_of_typ	t)	s	builder	in	

							Hashtbl.add	local_vars	s	local_var;	

 164

						let	e'	=	expr	builder	e	in	ignore	(L.build_store	e'	local_var	
builder);	ignore	(Hashtbl.add	expr_store_local	s	e');	e'	

						(*	File	I/O	calls	*)	

						|	A.Call	("read",	[e])	->	let	temp	=	expr	builder	e	in	

																																L.build_call	read_func	[|	temp	|]	
"read"	builder			

						|	A.Call	("write",	[e1	;	e2])	->	let	temp1	=	expr	builder	e1	in	

																																							let	temp2	=	expr	builder	e2	in	

																																							L.build_call	write_func	[|	
temp1	;	temp2	|]	"write"	builder			

						(*	https://www.ibm.com/developerworks/library/os-
createcompilerllvm1/	*)	

						|	A.ArrayAssign(v,	i,	e)	->	let	e'	=	expr	builder	e	in		

																																		let	i'	=	expr	builder	(List.hd	i)	in	

																																		let	v'	=	L.build_load	(lookup	v)	v	
builder	in		

																																		let	extract_array	=	
L.build_extractvalue	v'	1	"extract_ptr"	builder	in	

																																		let	extract_value	=	L.build_gep	
extract_array	[|	i'	|]	"extract_value"	builder	in	

																																		ignore	(L.build_store	e'	
extract_value	builder);	e'	

						|	A.Call("print",	[e])	->	let	e'	=	expr	builder	e	in		

																																if	L.type_of	e'	==	ltype_of_typ	
(A.Simple(A.Int))	

																																then	L.build_call	printf_func	[|	
int_format_str	;	e'	|]	"print"	builder	

																																else	if	L.type_of	e'	==	ltype_of_typ	
(A.Simple(A.Double))	

 165

																																					then	L.build_call	printf_func	[|	
dbl_format_str	;	e'	|]	"print"	builder	

																																					else	L.build_call	printf_func	[|	
str_format_str	;	L.build_extractvalue	e'	1	"extract_char_array"	
builder	|]	"print"	builder	

						|	A.Call("print_line",	[e])	->	let	e'	=	expr	builder	e	in		

																																					if	L.type_of	e'	==	ltype_of_typ	
(A.Simple(A.Int))	

																																					then	L.build_call	printf_func	[|	
int_format_str_nl	;	e'	|]	"print"	builder	

																																					else	if	L.type_of	e'	==	
ltype_of_typ	(A.Simple(A.Double))	

																																										then	L.build_call	
printf_func	[|	dbl_format_str_nl	;	e'	|]	"print"	builder	

																																										else	L.build_call	
printf_func	[|	str_format_str_nl	;	L.build_extractvalue	e'	1	
"extract_char_array"	builder	|]	"print"	builder	

						|	A.Call	(f,	act)	->	

									let	(fdef,	fdecl)	=	StringMap.find	f	function_decls	in	

			let	actuals	=	List.rev	(List.map	(expr	builder)	(List.rev	act))	in	

			let	result	=	(match	fdecl.A.typ	with	A.Void	->	""	

																																												|	_	->	f	^	"_result")	in	

									L.build_call	fdef	(Array.of_list	actuals)	result	builder	

				in	

				(*	Invoke	"f	builder"	if	the	current	block	doesn't	already	

							have	a	terminal	(e.g.,	a	branch).	*)	

 166

				let	add_terminal	builder	f	=	

						match	L.block_terminator	(L.insertion_block	builder)	with	

		Some	_	->	()	

						|	None	->	ignore	(f	builder)	in	

						let	globalstmt	=	function	

				A.Global(t,s)	->	let	global_var	=	L.build_alloca	(ltype_of_typ	t)	
s	builder	in	

							Hashtbl.add	global_vars	s	global_var;	

		|	A.GlobalAssign(t,s,e)	->	let	global_var	=	L.build_alloca	
(ltype_of_typ	t)	s	builder	in	

							Hashtbl.add	global_vars	s	global_var;	

							let	e'	=	expr	builder	e	in		

				ignore	(L.build_store	e'	(lookup	s)	builder);	ignore	(Hashtbl.add	
expr_store_global	s	e')	in		

						let	globalvars	=	List.map	globalstmt	globals	in		

				let	add_formal	(t,	n)	p	=	L.set_value_name	n	p;	

		let	local	=	L.build_alloca	(ltype_of_typ	t)	n	builder	in	

		ignore(L.build_store	p	local	builder);	

		Hashtbl.add	local_vars	n	local	in		

 167

		let	formals	=	ignore(List.iter2	add_formal	fdecl.A.formals		

		(Array.to_list	(L.params	the_function)))	in		

			

				(*	Build	the	code	for	the	given	statement;	return	the	builder	for	

							the	statement's	successor	*)	

				let	rec	stmt	builder	=	function	

		A.Block	sl	->	List.fold_left	stmt	builder	sl	

						|	A.Expr	e	->	let	tildes:(string,	llvalue)	Hashtbl.t	=	
Hashtbl.create	100	in	

																				ignore	(if	String.sub	fdecl.A.fname	0	2	=	"__"	
then	()	(*	Don't	generate	calls	to	callback	within	a	callback	*)		

																				else	(

																						let	callbackStrMap	=	StringMap.filter	(let	x	k	v	
=	(String.sub	k	0	2)	=	"__"	in	x)	function_decls	in		

																						let	callbackList	=	StringMap.bindings	
callbackStrMap	in	

																						for	j	=	0	to	((List.length	callbackList)	-	1)	do	

																								let	(key,	(fdef,	fdec))	=	List.nth	
callbackList	j	in		

																								let	newStr	=	String.create	((String.length	
fdec.A.fname)	-	2)	in		

																								let	varName	=	ignore(for	i	=	0	to	
((String.length	newStr)	-	1)	do	String.set	newStr	i	(String.get	
fdec.A.fname	(i	+	2))	done);	newStr	in	

																								Hashtbl.add	tildes	("~"	^	varName)	
(L.build_load	(lookup	varName)	varName	builder)		

																						done	

 168

));	

																				ignore	(expr	builder	e);		

																				ignore	(if	String.sub	fdecl.A.fname	0	2	=	"__"	
then	()	(*	Don't	generate	calls	to	callback	within	a	callback	*)		

																				else	(

																						let	callbackStrMap	=	StringMap.filter	(let	x	k	v	
=	(String.sub	k	0	2)	=	"__"	in	x)	function_decls	in		

																						let	callbackList	=	StringMap.bindings	
callbackStrMap	in	

																						for	j	=	0	to	((List.length	callbackList)	-	1)	do	

																								let	(key,	(fdef,	fdec))	=	List.nth	
callbackList	j	in		

																								let	newStr	=	String.create	((String.length	
fdec.A.fname)	-	2)	in		

																								let	varName	=	ignore(for	i	=	0	to	
((String.length	newStr)	-	1)	do	String.set	newStr	i	(String.get	
fdec.A.fname	(i	+	2))	done);	newStr	in	

																								let	pass_in	=	L.build_load	(lookup	varName)	
varName	builder	in	

																								let	result	=	""	in	

																								let	new_value	=	(L.build_call	fdef	[|	
pass_in	;	Hashtbl.find	tildes	("~"	^	varName)	|]	result	builder)	in	

																								L.build_store	new_value	(lookup	varName)	
builder	

																						done	

));		

																				builder	

						|	A.Return	e	->	ignore	(match	fdecl.A.typ	with	

 169

				A.Void	->	L.build_ret_void	builder	

		|	_	->	L.build_ret	(expr	builder	e)	builder);	builder	

						|	A.If	(predicate,	then_stmt,	else_stmt)	->	

									let	bool_val	=	expr	builder	predicate	in	

									let	bool_val	=	L.build_trunc	bool_val	(L.i1_type	context)	
"convert"	builder	in	

			let	merge_bb	=	L.append_block	context	"merge"	the_function	in	

			let	then_bb	=	L.append_block	context	"then"	the_function	in	

			add_terminal	(stmt	(L.builder_at_end	context	then_bb)	then_stmt)	

					(L.build_br	merge_bb);	

			let	else_bb	=	L.append_block	context	"else"	the_function	in	

			add_terminal	(stmt	(L.builder_at_end	context	else_bb)	else_stmt)	

					(L.build_br	merge_bb);	

			ignore	(L.build_cond_br	bool_val	then_bb	else_bb	builder);	

			L.builder_at_end	context	merge_bb	

						|	A.While	(predicate,	body)	->	

				let	pred_bb	=	L.append_block	context	"while"	the_function	in	

 170

				ignore	(L.build_br	pred_bb	builder);	

				let	body_bb	=	L.append_block	context	"while_body"	the_function	in	

				add_terminal	(stmt	(L.builder_at_end	context	body_bb)	body)	

						(L.build_br	pred_bb);	

				let	pred_builder	=	L.builder_at_end	context	pred_bb	in	

				let	bool_val	=	expr	pred_builder	predicate	in	

				let	bool_val	=	L.build_trunc	bool_val	(L.i1_type	context)	
"convert"	pred_builder	in	

				let	merge_bb	=	L.append_block	context	"merge"	the_function	in	

				ignore	(L.build_cond_br	bool_val	body_bb	merge_bb	pred_builder);	

				L.builder_at_end	context	merge_bb	

						|	A.Local	(t,	s)	->		

						ignore	(let	local_var	=	L.build_alloca	(ltype_of_typ	t)	s	
builder	in	

							Hashtbl.add	local_vars	s	local_var);	builder	

						|	A.For	(e1,	e2,	e3,	body)	->	stmt	builder	

						(A.Block	[A.Expr	e1	;	A.While	(e2,	A.Block	[body	;	A.Expr	
e3])])	

				in	

 171

				(*	Build	the	code	for	each	statement	in	the	function	*)	

				let	builder	=	stmt	builder	(A.Block	fdecl.A.body)	in	

				(*	Add	a	return	if	the	last	block	falls	off	the	end	*)	

				add_terminal	builder	(match	fdecl.A.typ	with	

								A.Void	->	L.build_ret_void	

						|	t	->	L.build_ret	(default	fdecl.A.typ))	;	

		in	

		List.iter	build_function_body	functions;	

		the_module	

Externalcalls.c
#include	<math.h>	

#include	<stdio.h>	

#include	<string.h>	
#include	<stdlib.h>	

struct	string	{	

		int	size;	

		char	*array;	

};	

 172

int	write(struct	string	out_file_name,	struct	string	string_to_write)	
{	

		FILE	*fp;	

		fp	=	fopen(out_file_name.array,	"wb");	

		if(fp	==	NULL)	{	

				perror("failed	to	open	file");	

				return	0;	

		}	

		int	chars_written	=	fwrite(string_to_write.array,	1,	
string_to_write.size,	fp);	

		fclose(fp);	

		return	chars_written;	

}	

struct	string	read(struct	string	in_file_name)	{	

		FILE	*fp;	

		int	len;	

		char	*buffer;	

		fp	=	fopen(in_file_name.array,	"rb");	

		if(fp	==	NULL)	{	

				perror("failed	to	open	file");	

				return	(struct	string)	{0,	""};	

		}	

		fseek(fp,	0,	SEEK_END);	

		len	=	ftell(fp);	

 173

		buffer	=	malloc(sizeof(char)	*	(len	+	1));	

		if(buffer	==	NULL)	{	

				perror("malloc	failed");	

				return	(struct	string)	{0,	""};	

		}	

		fseek(fp,	0,	SEEK_SET);	

		fread(buffer,	len	+	1,	sizeof(char),	fp);	

		fclose(fp);	

		return	(struct	string)	{len,	buffer};	

}	

double	__exp_int(int	x,	int	y)	

{	

		return	pow(x,	y);	

}	

double	__exp_dbl(double	x,	double	y)	

{	

		return	pow(x,	y);	

}	

#ifdef	BUILD_TEST	

int	main()	

 174

{	

		printf("5	^	-2	==	%f\n",	__exp_int(5,	-2));	

		printf("5	^	0.5	==	%f\n",	__exp_dbl(5.0,	0.5));	

		return	0;	

}	

#endif	

