VENTURE

COMS 4115 - Language Proposal
Zach Adler (zpa2001), Ben Carlin (bc2620), Naina Sahrawat (ns3001), James Sands (js4597)

Description of language we plan to implement:

We plan to build a Java-like object-oriented programming language. We will then build a library using the
language which is designed to allow game developers to easily create text-based adventure games.
Text-based adventure games, a style of game that has remained relevant in the gaming world despite the
advent of complex and high-technology special effects and multiplayer interfaces, are built mainly for a solo
player to interact with a storyline through just text. We propose a language designed to make the process of
developing such a game trivial for those without programming experience, while providing more
experienced programmers the ability to create more complex games in less time. Character and world
building can be done via JSON files rather than hard programming them, and the language will compile into
LLVM. Our language provides the essential components of all text-based adventure games right into our
language as data types, such as rooms, items, and Non-Player Characters (NPCs). Our proposal is to build

Venture, the language used to create worlds.

Types of programs that will be written in our language:

Our language will be used to design and create their own version of the game ‘Adventure’ with minimal
programming required. Objects such as equipment with default attributes which the player can interact with
in game can also be created via JSON, or the developer can code their own unique objects. Interactions
between the player and an object and between the player and NPCs will be similarly handled by Venture; a
set of defaults will be provided for creation via JSON objects and developers can create their own as they
desire.

After creating the game world, including NPC’s, rooms, items, and their interactions, Venture will compile

the provided information into an executable that will allow a user to play the game.

Language Basics:

Primitive Examples
int -110, 49, 3,0
string “a”, “bc”, “STRING”
boolean TRUE, FALSE
LinkedList String[], Room([]




Linked List generic Methods:

Datatype Method Description

void insert(Object x) Insert into LinkedList

void remove(Object x) Remove from LinkedList

int size() Return the number of elements in LinkedList

boolean contains(Object x) Return TRUE if x is in LinkedList; FALSE if not
Operator Description

*/ % multiplication, integer division, modulo

+ - Addition, subtraction

< <= > => Less than, less than or equal to, greater than, greater than or equal to

I= equal, unequal

= assignment
AND Logical AND
OR Logical OR
Keyword Description
if, else Control flow statements
while loops
new Creation of user defined Objects

I/0 Library Functions:

Datatype Method Description
String .read() Reads in user input and returns input as String (for user input, stdin)
String .readLine() Reads in input until a new-line character is found, returns that line

that was just read (for file use)

String print(String str) Prints out String to Console (stdout)




Venture Game Building Library:
Library Datatypes:

Room:
Description: An instance of a room object represents a container that the player can move in and out of.

NPCs and items can exist in the container.

Attribute Datatype Description

name String Name of room

items String(] List of items in the room

adjacent_rooms String|] List of adjacent rooms

locked boolean Indicates if key is needed to open door

active boolean Boolean used to mark if the player is currently in the
room

description String Text displayed when room entered for narrative
purposes

Note: Rooms may not have the same name. Will throw exception.

Item:
User defined items (eg. knife, book, shield)
Attribute Datatype Description
name String Name of item
actions String[] List of available actions for item when it is in the player’s inventory
weight int Weight of the item, to be recorded in the inventory.
armor int Items such as shields will automatically prevent damage.
damage int Damage of item if used to attack. Would be default Opts.
description int Description of item to be used when interacted with.
Notes:

There will be a default list of recognized actions for actions_inventory (eg. ‘attack with’, ‘drop’, ‘read’)
that a game developer can use. These actions will be associated with reactions (eg. attacking an NPC with a
knife will initiate combat and reduce their health). We will provide functionality for a developer to code a
custom action and the reactions as they see fit.

Items may not have the same name. Will throw exception.



NPC:

Description: NPCs, short for non-playable characters, are the characters that a user can talk/interact with in

the game world.

Attribute Datatype Description
name String Name of NPC
inventory String|] List of items the character possesses
health int Health of character used for combat.
dialogue String Character dialogue is printed upon prompt.
combat boolean Boolean used to indicate whether or not the NPC
and the player are in active combat.
Notes:

Dialogue in the game will not be interactive. There will only be an option for a player to prompt an

NPC at which point the game would print the NPC’s dialogue.

Combat boolean set to False for character by default. Can be set to True during character creation in

which case the character attacks the player on sight.

NPCs may not have the same name. Will throw exception.

Player:

Description: Players is the object that stores information about the user’s avatar in the game such as health,

and inventory.

Attribute Datatype Description
inventory String(] List of items the character possesses
health Integer Health of character used for combat.
carry_weight Integer Carry weight of character. Character has set weight

limit and can only carry a limited number of items.

Task:

Description: Task which the player has to complete

Attribute Datatype Description
active boolean True if active. False if task completed.
description String Description of task.
name String Name of task.

Note: Tasks may not have the same name. Will throw exception.




Game:

Description: Game objects which is used to keep track of the rooms, interactions and game history.

Attribute Datatype Description
rooms Room|[] Linked list of room names.
tasks Task[] Linked list of names of tasks.
name String Name of game

Sample code:
Object building:

~example of basic class creation in Venture~
class Nodef{
private int node value;
~constructor~
public Node (int x) {
node value = x;
}
~function~
public void change value (int value) {

node value = value;

Game building:

include Venture library;
public void main () {

~initialize knife: item(name, actions, weight, armor, damage, description)~

String knife description = “You pick up the awesome knife. You feel ready to
kill some goblins.”;

item knife = new item(“sweet knife”, [“attack”, “throw”], 5, 0, 10,

knife description);

~Create character and room~

~NPC(name, inventory, health, dialogue, combat) ~
NPC goblin = new NPC(“Goblin King”, [], 30, “I'm a Goblin!”, True);

~room(name, items, adjacent_rooms, locked, active, description)~
String entrance description = “You wake up outside a cave. Your head hurts”;

~active = True means this is the starting location of the player.~



room entrance = new room(“Entrance to Cave”, [“sweet knife”], [“Main Cave”],

False, True, entrance description);

String cave description = “The cave is dark. You hear a growl!”;
room cave = new room(“Main Cave”, [], [“Entrance to Cave”], False, False,

cave description);

new game cave adventure ([entrance, cave], [], “Goblin Quest” );

~From the code above using the Venture library, a developer would have completed a game.
In this game, the player wakes up outside the cave. The description of the entrance would print on the
screen. The player could then pick up the knife (advisable) and enter the main cave. The description of the

main cave would print out, then the Goblin King would say “I'm a goblin” and initiate combat.~



