SetC: A Concise Set Language

Julian Kocher (jk3813), Frank Ling (f12107), Heather Preslier (hnp2108)
February 8, 2017

1 Introduction

The motivation for writing a language inspired by set theory is because set
notation offers concise syntax when performing powerful and complex op-
erations. By modeling the syntax of our language this way, we are able to
accomplish two things: carrying out set calculations clearly and efficiently
and defining operations offered by other popular languages succinctly. Our
language, SetC, stands for Set Concise and we plan to compile SetC to LLVM.
The following proposal details some of the specifics of our language.

2 Language Overview

The SetC language is dynamically typed; it is designed to closely mimic the
natural structure of set notation to make code reading and writing more
concise for programmers performing set calculations. Each program must
include a main function.

2.1 Built-in Types

SetC includes four primitives: integer, float, string and boolean. Integers are
whole, non-fractional numbers. Floats are floating point numbers. Strings
are as they are in the standard sense; a sequence of characters enclosed in
double quotes, ””. Boolean is true or false. Sets can be collections of any
type: any combination of primitives as well as other sets.

Primitives Example
integers, floats 1, 1.112
strings "the setc language"
boolean true, false
Collections Example
sets {1, 2, 3, 4}

Table 1: Built-in Types

2.1.1 Building a Set

The following examples are multiple ways to construct a set in SetC:

set1={1,2, 3}; ~~ bracket notation
set2={2xi-1 | 1<=i<=5}; ~r~ yields {1,3,5,7,9}
set3={(x,y) | 1<=x<=3, y=x+1}; ~~ set builder notation

2.2 Operators

The SetC language includes the standard relational operators, arithmetic op-
erators and logical operators. When declaring a set, the values in the set will
be enclosed in curly braces, {}. The set related operators cover the following
operations: intersection, union, difference, and cardinality. SetC allows the
testing for the existence of an element in a set, returning a boolean value.
The "such that” operator | is used in two ways: first, when writing set nota-
tion; second, when evaluating an expression for a range of values to populate
a set. The indexing and slicing operations use zero-based indexing. The
"dot” operator . is used to distinguish between "for all” and ”for any”, as
in set notation, when the variable can take on a range of values in boolean
expressions. If the . operator is present before a variable, the truth value
of an expression will evaluate to true only if the expression is true for all
elements. The in keyword is shorthand for iterating over all elements in a
set.

Operators Operation Type
==, <, >, <=, >= Numeric relational
o=y x, /0 % Arithmetic
&&, 1, ! Logical

Table 2: Integer Operations

Operators Operations Examples
+ intersection a+b
* union axb
- symmetric difference a-b
cardinality #a
, chain elements together a,b
{} declaration {a, Db}
? existence of an element azb
| ”such that”, used in set notation {i | 1<i<5}
[] indexes a set, returns the element all]
slices a given set start len
in iterates through all elements x in a
‘for all’, precedes a variable 0<=.x<=5

Table 3: Set Operations

2.3 Control Flow

The SetC language supports if, elif, else statements. The boolean
expression that follows the if and elif keywords must be enclosed by
parentheses and can be any boolean statement. Commas are used to separate
if, elif and else statements.

2.3.1 Constructing an if/else statement

if (value > 3) value = value - 3, else value = value +
if (1 <=1 <=5 | 1 == 2) print(i); ~~ prints 2
if (x in A | x % 2 == 0) print("even numbers in A");

SetC supports two looping constructs. Each of the looping constructs
need to be enclosed by parentheses. The first is the standard while loop and

the second is expressed through a bounded variable, a ”such that” | operator,
and an optional boolean expression. If no boolean expression is entered, a
boolean value of true is implicit and the | operator can be omitted.

2.3.2 Constructing a Loop

while (boolean_expression) print(); ~~ standard while loop

(0 <= 1 <= 5) print(i); ~~ prints 12345
(0 <=1 <= 5 | true) print(i); ~~ equivalent to above
; end of statement
if, elif, else standard conditional statements
while standard looping construct
~~~ comments

Table 4: Control Flow

2.4 Built-in Functions

By default, the to_set () and to_string () functions will tokenize by
white space. The to_set () operation has two parameters: the first param-
eter specifies the string to be converted and the optional second parameter
specifies the token delimiter expressed as a single character enclosed in dou-
ble quotes, ie. /.

print() Displays output print ("hello");
to_set() Converts a string to a set to_set (a);
to_string() Converts a set to a string to_string("hello");

Table 5: Built-in Functions

2.5 User Defined Functions

To declare a function, the keyword def is followed by the name of the function.
The arguments for the function are declared within parentheses following the
function name. Each variable for the arguments are separated by a comma.
Any number of argument variables may be used provided they have been
declared. The body of the function should be fully enclosed in curly braces.



Example:
def func(a, b){ print(a); }
func (9, 10); ~~prints 9

3 Sample Program

1: def main() {
2 long_string = "onomatopoeia";
3: sub = "mat";
4:
5 ~~searches for the substring sub in long._string
6 if (1 <= index <= (#long.string - #sub + 1) |
long_string[index:#sub] == sub),
print ("found at", index)
9: else print ("not found");
10:
11: ~~ prints "The panda eats shoots and leaves."
12: sentence = "The panda eats, shoots, and leaves.";
13: setl = to_string(to_set (sentence, "") - {","});
14: print (setl);
15: }
References

http://setl.org/setl/
https://esolangs.org/wiki/Hyper_Set_Language



