
The MatriCs
Reloaded

A linear algebra-specific language for the budding C enthusiast

Short name: MaC
Extension: .neo

Talal Asem Toukan [tat2132] - Manager
Emmanuel Koumandakis [ek2808] - System Architect

Duru Kahyaoğlu [dk2565] - Language Guru
Florian Shabanaj [fs2564] - Language Guru
Nikhil Raghav Baradwaj [nrb2129] - Tester

Motivation​:

Matrices are a useful tool to represent finite sets of data across a wide range of subject
matter, including the hard sciences, mathematics, engineering, and computer science.
Moreover, basic matrix operations, including matrix multiplication, summation,
subtraction, inversion, and finding the transpose, eigenvalues, and eigenvectors of
matrices, have been unusually difficult to perform without the use of external packages
in languages like Python and R. The purpose of our language, The MatriCs, is to not
only simplify these computations, but also to reduce the running time of matrix
operations. Using C-like syntax, our language is tailored for programmers familiar with
C, but not necessarily familiar with popular “data science” packages, like SciPy
(Python), NumPy (Python), and Matrix (R).

Description​:

MatriCs is a strongly typed language that combines a C-like syntax with a whole host of
special operators. These operators enable the user to perform fundamental
computations involving linear algebra, including but not limited to calculating a matrix’s
transpose and inverse, carrying out matrix multiplication, and extracting submatrices
through slicing. At the very core of our language is the special data type: matrix. MatriCs
will compile to LLVM.

Data Types:

Primitive Data Types

Type Description Syntax Example

integer Used to define
integer types

int int a = 5

float 32-bit floating
number

float float a = 5.0

bool Used to define
boolean types (true
and false)

bool bool flag = true

double 64-bit floating
number

double double d = 5.0

Special Data Types

Type Description Syntax Example

matrix Defines a matrix mat mat int matr_x =
{1,2,3; 4,5,6; 7,8,9};

Operators:

Standard Operators

Name Syntax Example

Addition,Subtraction,
Multiplication, Division

+,-,*,/ int a = 5 + 8
//a = 13

Addition, Subtraction,
Multiplication, Division
Assignment

+=, -=, *=, /= int a = 4;
a += 2;
//a = 6

Assignment = int a = 7
//a has a value of 7

Equality check == 7 == 7
//Returns 1

Greater than >

6 > 5
//Returns 1

Less than < 5 < 3
//Returns 0

Greater than or equal to => 5 => 4
//Returns 1

Less than or equal to <= 5 <= 5
//Returns 1

Not equal != 5 != 3
// Returns 1

Logical Not ! int a = 1;
int b = 0;
!(a && b) //Returns 1

Logical AND && //with the values from the
example above
a && b //Returns 0

Logical OR || //with the values from the
example above
a || b //Returns 1

Matrix Operators

Name Description Syntax Example

Scalar Multiplication,
Scalar Division,
Scalar Power

Element-wise
multiplication/
division or scalar
multiplication/
division/power

.*, ./, .^ mat int C = A.*B;
mat int C = A./B;
mat int C = A.*2;
mat int C = A./2;
mat int C = A.^2;

Matrix Multiplication,
Matrix Division

Matrix multiplication/
division.Operation is
not commutative.
If at least one input is
scalar, then A*B is
equivalent to A.*B
and is commutative.

*, / mat int C = A*B;
mat int C = A/B;
mat int C = A*3;
mat int C = A/3;

Addition, Subtraction Addition/ subtraction,
scalar or

+, - mat int C = A+B;
mat int C = A+2;

element-wise mat int C = A+B;
mat int C = A-2;

Transpose Returns the
transpose of a matrix

’ mat int B = A’;

Indexing Returns the element
in the specified row
and column of a
given matrix

matr_x[​row_index​][​co
lumn_index​]

matr_x[2][4]
//returns the element
in the 2nd row and
4th column of the
given matrix

Slicing Returns an array of
elements with the
specified location in
terms of rows and
columns

matr_x[row_index1:ro
w_index2,
column_index1:colu
mn_index2]

matr_x[1:2,2:4]
//returns the matrix in
the 1 to 2nd rows and
2 to 4th columns

Keywords:

Syntax Description

if Similar to C conditional

elif Similar to C conditional (but with `elif`
keyword instead of `else if`)

else Similar to C conditional

for Similar to C for loop

while Similar to C while loop

{} scope

return Return from function

null No data

void Returns nothing

// Inline comment

/* */ Block comment

; End of instruction

Code Examples

main() {
 // note that indexing starts from 0 similar to
 // other conventional coding languages.
 mat int matr_x = {1,2,3; 4,5,6; 7,8,9;};
 matr_x[1][2]; // returns 6

 // close braces to indicate the end of main
}

int determinant_of_2x2(int mat a) {
 return a[0][0]*a[1][1] - a[1][0]*a[0][1];
}

int determinant(mat int m){
 int det = 0;
 int sign = 1;

 if(rows(m) == 1) { // base case, dimensional array
 return m[0][0];
 }

 // lib functions to get # of rows and columns in m
 // (actually the values should be the same anyway)
 int rows = rows(m);
 int cols = cols(m);

 // finds determinant using row-by-row expansion
 for(int i = 0; i < rows; i++){

 // keep decomposing the matrix by 1 dimension
 mat int smaller_m[rows-1][cols-1];

 for(int a = 1; a < rows; a++){
 for(int b = 0; b < cols; b++){

 if(b < i){
 smaller_m[a-1][b] = m[a][b];
 }
 elif(b > i){
 smaller_m[a-1][b-1] = m[a][b];
 }

 }
 }

 if (i%2 == 0){ // sign changes based on i
 sign = 1;
 }
 else{
 sign = -1;
 }
 det += sign*m[0][i]*determinant(smaller_m); // rec call for det
 }
 return det;
}

