
MPL: Matrix Processing Language

David Rincon-Cruz(Language Guru),
Chi Zhang(Tester),

Jiangfeng Wang(Team Leader),
Wode Ni(System Architect)

{dr2884, cz2440, jw3107, wn2155}@columbia.edu

February 9, 2017

1 Introduction
In this project, we are going to implement a programming language, MPL, designated to matrix
manipulation.

Matrices are widely used in various applications including physics, statistics, computational
graphics etc. Inspired by MATLAB and mathematica, we want to allow easy and efficient
matrix operations and image processing via matrix manipulation. The coding style is a combi-
nation of C language and MATLAB, and uses an imperative style with strong static typing.

The main goal of this language is to implement and achieve a simple and ease-of-use program-
ming language for matrices computation and image processing. The programs we are targeting
with this language are similar to MATLAB and Mathematica. We want to make it simple
for people to solve problems which involve working extensively with matrices. For example,
the language is extremely easy and helpful to implement a linear equation problem solver or
matrices calculation.

In addition to solving matrices problems, the language also provides image processing fea-
ture. In this case, each image is treated as an array of pixels, and self-defined functions can be
applied to each pixel of the image. Furthermore, we allow a matrix of different functions to be
applied on corresponding pixels of the image, allowing regions of a single image to be processed
differently.

2 Language Features
The fundamental data type in MPL is matrix, and MPL allows simple while customizable matrix
operations. In traditional general-purpose languages, these operations often involve an exten-
sive use of nested loop structures and conditional statements. In MPL, we introduce the idea
of having functions as entries in the matrix and design simple syntax to populate, manipulate,
and apply those matrices. MPL treats entry functions as first class objects, so we can populate
a matrix by functions and directly apply this function matrix to ordinary matrices with the
same dimensionality. The language will run an implicit loop over every entry of the matrix and
evaluate the corresponding entry function, which eases the user from writing nested for loops.

In our current design, to reduce unnecessary complexity, the language is imperative and there

1



is no C-like functions. All user-defined functions operate only on entries of matrices.

In MPL, an entry function has the access to the entry it currently operates on and nearest
8 neighbors. We design an @ operator that applies a matrix of functions to an ordinary func-
tion. Since we frequently want to apply the same operations on all entries, MPL provides .@
operator that applies one function to all entries.

The information about the neighbors enable MPL to perform operations such as convolution,
which is frequently used in image processing. To properly refer to the current entry and its
neighbors in an entry function, MPL provides a series of keywords starting with #. The current
entry can be accessed by #C, and the neighbors are #N, #W, #E, #S, #NW, #NE, #SW, #SE.
The # prefix is to resemble the configuration of the nine entries.

3 Syntax

3.1 Comments

The comment style will be C and Java Fashion with single line and block-style comments.

Table 1: Comment Styles in MPL
Type Name
// COMMENT Comments out rest of current line
/* COMMENT */ Comments out section in between delimiters. Is nestable.

3.2 Types

There are 3 "primitive" types that are the building components for our higher structures.

Table 2: Table of Types Available for MPL
Type Name
int Integer
float Floating Point Number
boolean Boolean

int and float will be implemented in their 32-bit representations, while boolean will be
stored in tradition 1-bit form.

3.3 Special Types

A key aspect of the mpl language is "equivalency" of function and primitive types.
Functions, have strict typing but can be overloaded to take Integer argument and Float

arguments.
Functions are matrix-oriented and hence take implicit arguments as they’re meant to apply

to entries.
In order to access the argument the function is applied on, the syntax is #C. Likewise, as

the element is defined on a matrix entry with neighbors, the neighbors can likewise be factored
into the computations with similar access codes.

2



Figure 1: Given a function applied to the center, these are the access codes for each entry.

All functions must have a single return value (which is strictly typed). Functions must be
declared with an explicit return type (which is how overloading separates same-name functions)
and will have all their code delimited with braces. An example of having every entry average
its value with that of it’s neighbors:
// Assign to each entry in the matrix , the average of all surrounding

coordinates .
int func fAverage {

int average = (#NE+#N+#NW+#W+#C+#E+#SW+#S+SW)/9;
return average ;

}

3.4 Structures

There are two fundamental structure that MPL is built around: Matrix(Mat), Images(Img).

3.4.1 Mat

Matrices are the high level equivalent of their math counterparts and will be singly typed as
one of 3: integer matrices, float matrices, and function matrices. Function matrices can be
applied to integer and float matrices, and standard matrix operations apply (operators defined
subsequently).

3.4.2 Img

Images are the next higher level structure to Mat. Images are a collection of "channel" matrices:
R, G, B, A. Operations applied to Images are applied to each channel individually or each
channel can be reference individually: Img1.R.

3.5 Operators

MPL consists of 9 key operators:

3



Table 3: Table of Operators Available for MPL
Operator Name
+ Addition
- Subraction
/ Diision
* Multiplication
^ Transpose
./ Element-by-Element Division
.* Element-by-Element Multiplication
@ Application
.@ Element-by-Element Application

The difference between @ and @. is in regards to arguments. @. takes a function matrix
and a value matrix and applies functions to corresponding entries in the value matrix. @ takes
a single function and applies it to every entry of a value matrix.

4 Sample Code

4.1 Image blur sample

In this example, we construct a function that performs convolution on an image using a blur
kernel encoded.

// Img is a basic struct that has 3 matrix .
// struct Img
// { Mat <double > R, G, B;}

// Read from a picture called Lenna.png
Img image = imgread ("Lena.png");

// Now we have 3 matrix of int , R,G,B

// We enconde the convolution against blur kernel in this function
func fblur {

double grayValue =0.0;
grayValue = #C *0.147761 + (#N+#S+#E+#W) *0.118318 + (#NE+#NW+#SE+#SW)

*0.0947416
return grayValue ;

}

// Use the function fblur on every channel in the matrix ;
Mat blurredR = fblur @ R;
Mat blurredG = fblur @ G;
Mat blurredB = fblur @ B;

// format the image for output
Img output = new Img(blurredR , blurredG , blurredB );

// imgwrite helps to output the image.
imgwrite (output ," blurredLena .png");

4.2 Matrix of functions sample

In this section, we demonstrate the semantics of matrix functions and related operations on
them.

4



// First , we can define some functions that modify the entries .
func f1 {

int temp = #C + 1;
return temp;

}

func f2 {
int temp = #C + 5;

return temp;
}
func f3 {

int temp = #C - 7;
return temp;

}
func f4 {

return temp;
}

// Then , build some matrix .
Mat A = { 1 2;

3 4;}
Mat B = { 1 2;

3 4 }
Mat C = {1 1;

1 1;}
// F is different from A, B, C. It is a matrix of functions .

Mat F = { f1 f2;
f3 f4;}

// By using @, the "apply" operator , functions in the matrix will be applied on
corresponding entries in the matrix of int;

Mat D = F @ C;

print D;

// D will be {1 5;
// -6 1;}
// Compilation error if dimensions of the two operands of @ don ’t match

// the operations between matrix have certain rules. "@" has higher order that
operations between matrix of data (+,-,*,/);

Mat E = A * F @ C;

print E;

// Note that this is equal to "A * (F @ C)"

// Possible feature : do function combination by using * in matrix of func; This
can chain

// First we could regulate the operation between funcs;
// Rule 1.0 Ver:
// example : f3 = f1 * f2;
// Mat K = f3(A); will be the same as Mat K = f1 @ (f2 @ A);

// Then we can have matrix operation for function
Mat F1 = {f1 f2;

f3 f4};
Mat F2 = {f1 f2;

f3 f4};

5



// application :

Mat Famazing = F1 * F2;

Mat result = Famazing @ C;

// the result would be this matrix :F1@(F2@C);

6


	Introduction
	Language Features
	Syntax
	Comments
	Types
	Special Types
	Structures
	Mat
	Img

	Operators

	Sample Code
	Image blur sample
	Matrix of functions sample


