
 

Columbia’s Awk Replacement Language (CARL) 
COMS 4115 Programming Languages and Translators (Spring 2017) 

Darren Hakimi (dh2834) System Architect 
Keir Lauritzen (kcl2143) Manager 
Leon Song (ls3233) Tester 
Guy Yardeni (gy2241) Language Guru 

Description of Language 

Columbia’s Awk Replacement Language (CARL) is a record-processing, string-parsing 
language with syntax based on GNU Awk (Gawk) with a subset of the language features.   GNU 1

Awk is an extension of the original Awk language at Bell Labs by A. Aho, P. Weinberger, and 
B.Kernighan (hence, AWK).  Awk is an interpreted language by CARL will be compiled. 

CARL programs follows the same structure as Awk:  
pattern1 {action1} 
pattern2 {action2} 

The language reads each record (nominally each line but defined in ​RS ​) from the input file, 
checks whether it matches the pattern and if it does it takes the listed action.  The pattern 
matching is supported using regular expressions.  Each record is subsequently divided into 
fields and the actions can be applied to each field (nominally delimited by spaces but defined 
using ​FS ​).  All records are processed against each pattern in order (for example, all records will 
be processed against ​pattern1 ​then all records will be processed against ​pattern2 ​.  This 
behavior matches Awk’s behavior as an interpreted language. 

Two special-purposed patterns are BEGIN and END.  All actions in a BEGIN pattern are 
executed at the beginning of the program before any records are processed and they are 
executed only once.  Actions with the END pattern are the same only executing at the end of the 
records. The actions specified inside { } between the BEGIN and END patterns will recur per 
field. 

The actions support the standard set of control statements, variable assignments, numerical 
operations, and user-defined functions.  The syntax is similar to C but does not support pointers 
or dynamic memory (outside of the built in datatypes of string and associative array).  The 
actions can operate on the entire record using the $0 field designator or on positional field 
indicators $1, $2,...  Field designations are do not allow manipulation within the field, so CARL 
provides a set of builtin functions to manipulate records.  

1 This project is based on GNU Awk and the language documentation at 
https://www.gnu.org/software/gawk/manual/gawk.html​ was used extensively in preparation of 
this proposal. 

https://www.gnu.org/software/gawk/manual/gawk.html


 

Intended Uses 

CARL (like Awk) is intended to be used to parse and manipulate records in text files.  Common 
uses for complex CARL programs are performing calculations on text based data sources, such 
as CSV files.  With CARL it is possible to calculate statistics or perform bookkeeping on 
complex data tables.  A simple CARL usage would be to parse a log file for a specific event. 

We intend to extend CARL from Awk to provide additional capability for semi-structured data. 
Examples of semi-structured data include XML and HTML files, where there is 
computer-readable information but it varies in length and form. CARL has a wide array of uses 
in semi-structured files. CARL can parse through files and extract portions of the file data based 
on tags.  CARL could be used for web scraping because as it can iterate through the HTML and 
identify patterns in the tags. The data extracted, such as email addresses and phone numbers, 
can be formatted into a table for later use.  An example extension identified so far is the 
inclusion of an ​MF ​reserved variable, which stores the field that matches the regular expression. 

Parts of the Language 

CARL, like its predecessor AWK, follows a ​pattern {action} ​ syntax.  

Patterns: 

BEGIN BEGIN ​is a special keyword indicating that the action is to be run 
before any records are processed. 

END END ​is a special keyword indicating that the action is to be run after all 
records in the file have been processed. 

Expressions Expressions can be used if they evaluate to non-zero or not null. 

Character classes Character classes are shorthands to describe sets of characters that 
have a specific attribute, and can only be used inside bracket 
expressions. They are denoted by “[:” followed by the keyword for that 
character class, then “:] 
E.g. ​[:alnum:] ​ matches all alphanumeric characters, a convenient 
way to avoid typing “​/[A-Za-z0-9]/ ​” 
Character classes and their keywords are defined by the POSIX 
standard 

Regular Expressions: 

CARL will use regular expressions heavily to parse through semi-structured files. 

Regex Definition 
and Usage 

Like awk, you can define a regex by enclosing it in slashes. 
e.g. ​/abc/ ​, which will attempt to iterate through every record and 



 

perform some action if the string “​abc ​” is found in that record. 

Dynamic Regex CARL will allow for any expression to be used as a regex. That is, 
given an expression, CARL converts it to a string then uses it as a 
regex 

Ambiguity In cases of ambiguity, CARL takes the leftmost longest match 
For example, ​\a*\ ​ for the string “​aaaabbaa ​” matches with “​aaaa ​” instead 
of “​aa ​”. 

 

Regex Operators: 

\ Backslash is used to suppress any special meaning associated with the 
character e.g. “ ​\”hello\” ​ “ will search for the string ​“hello” ​, inclusive of 
quotation marks 

^ Forces the program to look for matches at the beginning of the string for 
example ​/^foo/ ​ will match “football” but not “afoot” 

$ Similar to ​^ ​, except the program looks for matches at the end of the string 
instead 

. This matches any ​single​ character. 
For example, ​/.a/ ​ matches “​ba ​” and even the whitespace character “​ a ​”, but not 
“​ab ​” 

[ x ] Called the bracket expression. Matches any single character enclosed within the 
square brackets, for example ​[0-9] ​ searches for any digits in the string 

[ ^x ] Complement of the bracket expression. Matches any single character ​not​ within 
the square brackets e.g. ​[^0-9] ​ will match any character that is not a digit 

* Repeats the preceding regular expression as many times as necessary to find a 
match. For example, ​\ab*\ ​ matches “​ab ​”, “​abbbbb ​” and ​“ ​a” 
Whereas ​\(ab*)\ ​ matches “​ab ​”, “​abababab ​”, ​and the empty string 

Actions: 

Awk is a Turing-complete language with support for different data types and structures, control 
flow, I/O, and user-defined functions.  CARL will implement most of the language, but will 
exclude many of the built-in variables and some, less common, aspects of the language. 

Data types and structures 

Integers Supports a single type of integer. 



 

Floating point Supports a single type of floating-point number. 

String Standard string data type. 

Associative arrays One-dimensional associative array.  There is language support for 
for-loops through the array and adding and deleting elements. Indices 
of arrays can be either numbers or strings. 

There is automatic type conversion between integers and floating point operators, with 
escalation from integers to floating-point as needed (irreversible). 

Control flow 

If ​statement C-style if-then-else controls.  
if (expr) { body } else {body} 

For ​statement C-style for loops.  Python-style loops 
(element in array) ​ for associative arrays. 

Break ​statement C-style breaks to exit loops.  

Return ​statement Return from user-defined functions. 

User-defined functions The ability to implement functions 

CARL enforces the need for {} around the body of control switches.  Only for loops are 
supported. While and do-while are not supported. 

Reserved variables: 

RS Variable that stores the literal for separating 
the input file into multiple records. 

FS Variable that stores the literal for separating a 
record into multiple fields. 

NR Number of records processed. 

NF Number of fields in a record. 

RSTART Index value that matches the beginning of a 
regex expression. 

RLENGTH Length of the matching regex expression. 

MF Matching value of the regex pattern to 
eliminate more complex expressions. 

$0 Variable storing the entire record. 



 

$1, $2, ... Positional variables for the parsed fields. 

Builtin Functions 

match( ​string, regex) Given a ​string​ , return the character index of the longest, 
leftmost substring matched by ​regex​ . Return 0 otherwise (note 
that we return 1 if the match occurs at the beginning of the 
string). 

substr( ​string, start, 
length)  

Looks at ​string​  and returns a ​length​  character-long substring 
beginning from ​start​ . 
For example, ​substr(“hello”, 2, 3) ​ returns “​llo ​”. 

sub( ​regex, new, target ​) Searches the ​target​  string for the given ​regex​ , and replaces it 
with ​new​ . We always find the longest, leftmost substring and 
replace only once. 
For example, ​str = “columbia college” 
sub(“col”, “example”, str) ​ will set ​str ​to be “​exampleumbia 
college ​”  

gsub( ​regex, new, target ​ ) Like ​sub() ​, except we replace every occurrence in ​target​ . Note 
that the ​target​  argument is optional, in which case we search 
the entire input record. Return the number of substitutions 
made. 

length( ​string ​ ) Returns the number of characters in ​string ​ . 

split( ​string, array, 
separator)  

Splits the given ​string ​  ​into pieces using ​separator ​ , and 
stores each piece in ​array ​ . 
For example, ​str = “example@ ​email@fake.com ​” 
split(str, array, “@”) ​ sets the contents of ​array​  to be: 
array[0] = “example” 
array[1] = “email” 
array[2] = “fake.com” 
 

string​  ​remains unchanged. ​split() ​ returns the number of 
elements created, so in this case ​split() = 3 ​.  

 

mailto:email@fake.com


 

Example programs 

Email parsing example: 

carl '$0, /.*@.*\..*/ { print MF}'  
replaces the longer  
awk 'match($0, /.*@.*\..*/) { print substr( $0, RSTART, RLENGTH )}'  

Phone number parsing example: 

CARL example: 
carl'$0, /\([0-9]{3}\)[[:space:]][0-9]{3}\-[0-9]{4}/ { print MF}' filename  
replaces the longer awk version:  
awk 'match($0, /\([0-9]{3}\)[[:space:]][0-9]{3}\-[0-9]{4}/) { print substr( $0, 
RSTART, RLENGTH )}' ​filename. 

 



 

Text database parsing example: 

Input file: 

1. (212)-123-1011 $120,000    Andrew M 
2. (222)-298-8494 $50,000     Bob M 
3. (114)-124-1234 $170,000    Katy F 
4. (123)-222-1111 $90,000     Lisa F 
5. (123)-132-4666 $80,000     Billy M 
6. (222)-115-1515 $130,000    Alexa F 
7. (718)-123-4556 $242,000    Mia F 

Code: 

BEGIN { 
total=0; 

       highEarners=0; 
lowEarners=0; 
females=0; 
males=0; 

} 
{ 

gsub(/\$|,/,"",$3); 
gsub(/\(|\)|-/,"",$2); 
personID=$1; 
phoneNum=$2; 
salary=$3; 
name=$4; 
gender=$5; 
total=total+salary; 
if (salary>=100000) { 

highEarners=highEarners+1; 
} else { 

lowEarners=lowEarners+1; 
} 
if (gender=="F") { 

females=females+1; 
} else if (gender=="M") { 

males=males+1; 
} 
areaCode = substr(phoneNum, 0, 3); 
if (dict[areaCode]) { 

dict[areaCode] = dict[areaCode]+1; 
} else { 

dict[areaCode] = 1; 
} 

} 
END { 



 

 print "Total Amount: $"total; 
average=total/NR; 
print "Average Amount: $"average; 
print "High Earners: "highEarners; 
print "Low Earners: "lowEarners; 
print "Male to Female Ratio: "males":"females; 
for (i in dict) { 

print "Area code: "i" has "dict[i]" people."; 
} 

} 

Output (by running by “carl -f [code-file] [data-file]”: 

Total Amount: $882000 
Average Amount: $126000 
High Earners: 4 
Low Earners: 3 
Male to Female Ratio: 3:4 
Area code: 222 has 2 people. 
Area code: 114 has 1 people. 
Area code: 212 has 1 people. 
Area code: 718 has 1 people. 
Area code: 123 has 2 people. 


