Ballr: A 2D Game Generator

by
Noah Zweben (njz2140)
Jessica Vandebon (jav2162)
Rochelle Jackson (rsj2115)
Frederick Kellison-Linn (fjik2119)

| anquage Description

The language will be used to build simple 2D games with user-defined environment (bounds,
obstacles, tokens), rules and player control. The programmer will be able to place moving or
stationary rectangular obstacles and tokens throughout a bounded space which will be
displayed in a GUI. They will be able to define how to control player tokens (mouse-clicks,
arrows keys), and the rules associated with collisions between players and obstacles,
boundaries, and/or special tokens. This will also be useful for creating simple drawing/animation
applications.

Ballr abstracts away the event loop that is necessary when writing a game in, say, C++. Instead,
the programmer is free to focus on events that may occur during the course of the game:
collisions, key presses, and lifetime events being primary examples. This allows the structure of
the game to be clearer from a simple glance at the code.

| anquage Features

Gameboard blocks:
- Define a particular board for the game (like a single level)
- Include an init function to populate the board with entities (will be run every time the
board is loaded).

Entity blocks:
- Define features of all the entities on the gameboard - players, obstacles, special tokens
etc
- Required members:
- scale: (x, y) dimensions
- clr: color
- Optional members

- mov: can define automatic x and y motion
- Entity specific events, such as left_key, right_key

Events & events blocks:
- Describe things that can happen during the game
- Collisions with other entities
- Triggers such as mouse clicks, arrow keys
- Win conditions
- One “events” block per gameboard is required to describe behavior on the occurrence of
different events
- Named events can be defined using the “event” keyword
- The events block can be thought of as a listing of the rules of the game. Such as what
happens when two things collide, or something moves into a specific area . . .

Reserved Keywords:

time: represents the time that has passed since the current level began. Useful for setting up
automatic sinusoidal/circular motion.

restart: useful for the concept of a “death” during a game. Restarts the gameboard using the init
block.

load <gameboard.name>: starts a new level, running the init block of a gameboard specified
by the gameboard keyword.

destroy <entity>: removes entity from gameboard

entity: Defines the various elements on the board.

gameboard: Defines a particular level in the game (as outlined above) and gives the starting
state in the init function.

event: Constructor for events. see events & events block section

add <entity> at <position>: Adds the entity to the gameboard at position

func: Signifies a custom function definition.

Operators:
>< - collision operator, triggers collision event if the entities applied to have collided

-> - do operator attached to events. When an event occurs, such as the left key being pressed,
the code to the right of the error gets executed. So in code this would look like:
left key -> player.x++

Functions:
Global functions can be defined at the top level of the code, and can be used for things such as
calculating position, score, or other game elements.

Sample Program

Our goal for this program is to mimic the game as demonstrated below. The red square (the
player) is controlled by the arrow keys. The blue squares are obstacles which oscillate up and
down. The player must dodge the blue obstacles, pick up the yellow token in the center of the

game, and then navigate to the greenzone in order to win. (See picture for details)

entity obstacle {

= blue;

clr

(1,1);

scale

entity player{

= (1,1);

scale

4+ s o~
+ | |
Kool e]
X+ >
n .+ R
O n > 0
0, 0 + O
[OTR) R
A o}
A O A
| |
> A
O > 1>
M0 0]
| M >y M
+ | O
S P Mg
o | 2
= O 9 O
4 - 3 T

= red;

clr

entity pickup {
clr = yellow;
scale = (1,1);

entity endzone {
scale = (30,50);
clr = green;

func my sin(float t) return float {

return sin(t);

gameboard gamel {
size = (200,100)
init {
for i in range (6) {
obstacle obs;
if (i%2) {obs.mov.y = my sin(time);}
else {obs.mov.y = -1*my sin(time);}
add obs at (20+20*1i,50);
}
add player at (10,50);
add pickup at (100,50);
add endzone at (175,50);

}s

events {
player >< obstacle -> restart;
player >< pickup -> {
player.has pickup = true;
destroy pickup;
}

win -> load game2;

event win {
(player >< endzone) and player.has pickup

