

J-STEM: Matrix Manipulation Language

Language Reference Manual

Tessa Hurr (trh2124)
Julia Troxell (jst2152)
Emily Song (eks2138)

Samantha Stultz (sks2200)
Michelle Lu (ml3720)

Table of Contents

1. Introduction

2. Types

3. Lexical Conventions

3.1 Identifiers
3.2 Keywords
3.3 Comments
3.4 Operators
3.5 Precedence

4. Standard Library Functions

5. Syntax

5.1 Expressions
5.2 Declaration and Initialization

6. Control Flow

6.1 Statements and Blocks
6.2 If-Else If-Else
6.3 Loops
6.4 Break and Continue

7. Functions and Program Structure

7.1 Functions and Function Calls
7.2 Scope Rules
7.3 Block Structure

1. Introduction

J-STEM is a 2-D matrix manipulation language. Matrices are important tools in mathematics
with various applications such as graphic rendering and encryption. We have found that matrix
manipulation in Java is tedious and difficult. We propose J-STEM, a language that allows for
easy and intuitive matrix transformations. J-STEM is compiled into LLVM.

The matrix manipulation language will have functions to transform matrices. The functions will
include calculating the determinant, rotating the matrix, applying operations to each value in the
matrix, and deleting or adding columns and rows. Basic functions to add, subtract, multiply, and
divide matrices will be implemented as well. The goal of our language is to utilize these
functions and apply them to images. The language will be able to edit various features of images.
These include different color overlays, image rotations, and altering contrast and brightness.

2. Types

Data Type Description Declaration

mx A matrix (a list of rows), with
type specified
Default initialization to a 0x0
matrix (an empty list)

int mx m = matrix();
float mx m = matrix(1, 2);

row A list row r = [1, 2, 3];

string String value string str = “hello!”;

int Integer value int x = 5;

float Floating point value float x = 5.0;

column A list col c = [1, 2, 3];

file file file filename = file.ppm;

list Like Java list l[];

pixel A tuple of length 3; a wrapper for
a tuple

pixel p = (255, 255, 255);

tuple Like Java tuple t = (1, 2, 3);

bool value True or False bool b = True;

3. Lexical Conventions

3.1 Identifiers

An identifier must begin with a lowercase or uppercase character, and can otherwise consist of
any combination of these characters along with digits and underscores. Other symbols (i.e. !, @,
#, etc.) are prohibited in variable names, and keywords (i.e. for, while, if, etc.) are prohibited as
variable names as well.

3.2 Keywords

Keyword Description Usage

print() Prints to console print(m);

for Iteration until condition is reached for(condition) { … }

while Loop until condition is reached while(condition) { …
}

range Range of numbers used in a for loop range(0, 9, 2)
// ​0, 2, 4, 6, 8

if If in an if-else statement if { … }

else Else in an if-else statement else { … }

else if Additional if statement after an if-else statement else if { … }

return Returns value from a function return m;

main Main function def void main() { … }

def function declaration def void x(int y) { …
}

in Traverse through a sequence in an enhanced
matrix for loop

for(row in matrix){
 ...process row...

}

void Return type for a function that does not return
anything

def void no_return()
{ … }

3.3 Comments

single-line comment
/* … */ multi-line comment

3.4 Operators

Arithmetic
Operators

Description Usage

= Assignment operator int y = 6, int z = 2

+ Arithmetic operators int x = y + z ​// ​x = 8

- Subtraction operator int x = y - z ​// x = 4

* Multiplication operator int x = y * z ​// ​x = 12

/ Division operator int x = y / z ​// ​x = 3

^ Exponentiation operator int x = 2^3 ​// ​x = 8

== Returns 1 if the values are equal, 0 otherwise y == z ​// ​return 0

+= Adds the value on the left to the value on right
and stores in left variable

y += 1 ​// ​y = 7

!= Returns 1 if the values are not equal, 0
otherwise

y != z ​// ​return 1

> Greater than operator y > z ​// ​return 1

< Less than operator y < z ​// ​return 0

>= Greater than or equal to operator y >= z ​// ​return 1

<= Less than or equal to operator y <= z ​ ​// ​return 0

&& Logical AND operator 0 && 1 ​// return 0

|| Logical OR operator 0 && 1 ​// return 1

! Logical NOT operator !(5 == 5) ​// return 0

Matrix Operator Description Usage

++, --, **, //, =? Scalar and matrix operations M = 5 * M ​1 ​ ​ // scalar
multiplication
M = M ​1 ​ ** M ​2 ​ ​// matrix
multiplication

==, !=, >, <, >=, <= If two matrices have the same
dimension: Compare element in one
matrix to corresponding element in
other matrix, for entire matrix

M1 == M2 ​// returns 1 if matrices
contain same elements, 1 otherwise

M[r1:r2][:] Access rows from r1 (inclusive) to
r2 (exclusive) of matrix M. This is
similar to list slicing in Python.

M[2][:] ​// access row 2
M[2:4][:] ​// access rows 2-3
M[2:][:] ​// access rows 2-len

M[:][c1:c2] Access columns from c1 (inclusive)
to c2 (exclusive) of matrix M. This
is similar to list slicing in Python.

M[:][4] ​// access column 4
M[:][4:8] ​// access column 4-7
M[:][4:] ​// access column 4-len

3.5 Precedence

Precedence Operators

Highest Function and matrix declarations

 !

 *, /

 +, -

 <, > , <=, >=

 ==, !=

 &&

 | |

Lowest =

4. Standard Library Functions

Function Description Usage

addRow(int
rowNum, row r)

Insert a row of 0’s at the bottom
of the matrix (end of list)
If optional arg1 is supplied, insert
a row of 0’s at that index
If arg1 and arg2 are supplied,
insert arg2 (a row) and index arg1

m.addRow();
m.addRow(2);
m.addRow(2, [1,2,3]);

delRow(int rowNum) Delete last row in matrix (end of
list)
If optional argument supplied,
delete row at that index

m.delRow();
m.delRow(2);

matrix(int x, int y) Create a matrix
Arguments specify #rows,
#columns
No arguments creates a 0x0
matrix

int mx m = matrix();
int mx m = matrix(2, 3);

loadFile(file
filename)

Load an image file into a matrix int mx m =
loadFile(file.ppm);

transpose() Transpose matrix m.transpose();

inverse() Inverse matrix m.inverse();

addColumn(int
colNum, row r)

Insert a column at the right of the
matrix
If optional arg1 is supplied, insert
a column of 0’s at that index
If arg1 and arg2 are supplied,
insert arg2 (a column) and index
arg1

m.addColumn();
m.addColumn(3);
m.addColumn([1,2,3]);

delColumn(int
colNum)

Delete rightmost column in
matrix

m.delColumn();
m.delColumn(3);

If optional argument is supplied,
delete column at that index

length() Returns # of rows in matrix or #
of elements in a row

int m_len = m.length();
int row_len =
m[0].length();

append() Adds another row to the end of a
matrix

m.append([2, 3]);

5. Syntax

5.1 Expressions

Arithmetic and Matrix Operations

Assignment operators are binary operators with right-to-left associativity. Arithmetic and matrix
expressions are mathematical operations with left-to-right associativity.

Scalar multiplication
M = 5 * M​1

Matrix multiplication
M = M​1 ​ ** M​2

5.2 Declaration and Initialization

Variable Declaration and Initialization

All variables must be declared before use. A declaration specifies the variable type and the
variable name. A variable may also be initialized in its declaration. A variable can also be
declared in one line and initialized in the next.

General Examples
variable_type variable_name;

variable_type variable_name = literal;

variable_type variable_name;
variable_name = literal;

Specific Examples
int x;

int x = 6;

int x;
x = 6;

Matrix Declaration and Initialization

All elements in a matrix must be of the same type, and elements in a matrix can only be ints and
floats. A proper declaration specifies the element type, that the variable is a matrix, and the
matrix name. “matrix()” initializes an empty matrix, “matrix(r, c)” initializes a matrix with r
rows and c columns, and functions such as addRow and addColumn can be used to populate/edit
the matrix.

General Examples
element_type mx matrix_name;

element_type mx matrix_name = matrix();

element_type mx matrix_name;
matrix_name = matrix();

Specific Examples
int mx M;

int mx M = matrix();

int mx M;
M = matrix()

A matrix can also be initialized with the following syntax:
int mx M = {(1, 2, 3), (4, 5, 6)};

6. Control Flow

6.1 Statements and Blocks

Each statement is followed by a semicolon.

Example:
int x = 6;

Blocks are surrounded by brackets.

Example:
if (x == 6) {
 print(“x is 6”);
} else {
 print(“x is not 6”);
}

6.2 If-Else If-Else

if-else if-else statements are blocks. When the “if” condition is not met, the program will check
for any other conditions (specified by “else if” or “else”). “else if” is required if checking for
more than two conditions; “else” will suffice otherwise. When a condition is met, the program
will execute the code in the corresponding block, and ignore all subsequent “else if” and “else”
conditions. An “else if” statement requires a condition, while an “else” statement does not.

Example:
if (x > 6) {
 print(“x is greater than 6”);
} else if (x < 6) {
 print(“x is less than 6”);
} else {
 print(“x is equal to 6”);
}

6.3 Loops

For Loop

The J-STEM for loop operates like Java’s. There are 3 fields to the condition of a for loop. First,
an index variable is initialized to some value, then the stop condition is specified, and then the
increment/decrement of the index variable is given (using operators += or -=). The block is
looped through according to these fields.

for (index, stop_condition, step_value) {

...
}

Matrix For Loop
An enhanced version of the standard for loop used to iterate easily through matrices. The
enhanced for loop uses the keyword “in” to iterate through a list type (i.e. a matrix, a row, etc.)

for (elt1 in iterable) {

…
}

While Loop
The while loop also operates like Java’s. In the condition, there is only one field, for specifying
the stop condition. Usually, this stop condition utilizes operators such as ==, <, >, etc.

while (stop_condition) {

...
}

Examples:

for (int i = 0; i < 10; i += 1) {

...
}

for (row in matrix) {

for (cell in row) {
…process cell...

}
}

while (i < 10) {

...

}

6.4 Break and Continue

Break Statement
The break statement terminates a loop.

while (stop_condition) {

break; # program exits loop

}

Continue Statement
The continue statement skips the rest of the current iteration of the loop, and starts the next
iteration of the loop.

while (stop_condition) {

continue; # program jumps to next iteration of the loop

}

7. Functions and Program Structure

7.1 Functions and Function Calls

To declare functions, use keyword ‘def’.If there is no return value for the function, use keyword
‘void’ and ‘main’ followed by parenthesis and brackets for the function body. If the function
returns a value, state the type of the return of the function, function name, and argument type and
names in parenthesis followed by brackets to enclose the function body. Functions have to be
defined as such and implemented before being called.

Function Declaration

def void main () {

statement;
}

def return_type function_name (arg_type arg_name) {

return expression;
}

Example:

def mx add (mx matrix_a, mx matrix b) {

new_matrix = a ++ b;
return new_matrix;

}

7.2 Scope Rules

The scope of a variable depends on when it is declared within a function. If the variable is
declared at the outermost level of the function (i.e. at the beginning of the function), then it is
accessible throughout the function. If the variable is declared at the beginning of a loop, then it is
only accessible within that loop. Likewise, if the variable is declared as a variable in the
condition of a loop, then it is also only accessible within that loop.

Example 1
def void main() {
 int x = 5;
 print(x); # will print 5
}

Example 2
def void main() {
 int i = 0;
 while(i < 5) {

int square = i * i;
print(square); # will print 0, 1, 4, 9, 16
i = i + 1;

 }
 print(square); # error
}

Example 3
def void main() {

 for(int i = 0; i < 5; i++) {
 print(i) # will print 0, 1, 2, 3, 4
 }
 print(i); # error
}

7.3 Block Structure

Functions, conditionals, and loops will all be written using block structure, defined by an
opening bracket “{“ and a closing bracket “}”. Variables declared within brackets cannot be
accessible outside the block.

Example Code
This is example code in our language that multiplies two matrices. We have a matrix
multiplication operator (**) in our language, but this manual implementation is a good way to
see how some of the parts of our language work.

/* multiply 2 matrices */
def int mult(row1, col2) {

int sum = 0;
for(int i = 0; i < row1.length(); i += 1){

sum += (row1[i] * col2[i]);
}
return sum;

}

def void main() {

int mx m1 = {(1,2), (3,4)};
int mx m2 = {(2,3), (4,5)};
int mx m3 = matrix(m1.length(), m2[0][:].length());
for(row_m1 in m1) {

row m3_row = [];
for(col_m2 in m2) {

m3_row.append(mult(row_m1, col_m2));
}
m3.addRow(m3_row);

}
print(m3);

}

