
COMS W4115 Programming
Languages & Translators

GIRAPHE

Language Reference Manual
 Name UNI

Dianya Jiang dj2459
Vince Pallone vgp2105
Minh Truong mt3077
Tongyun Wu tw2568

Yoki Yuan yy2738

1 Lexical Elements

1.1 Identifiers

Identifiers are strings used for naming different elements, such as variables,
functions, classes. These identifiers are case sensitive, and can involve
letters, digits, and underscore ‘_’, but should always start with a letter. These
rules are described by the definitions involving regular expressions below:

 identifier := (letter) (letter | digit |
underscore)*
 digit := ‘0’ - ‘9’
 letter := uppercase_letter |
lowercase_letter
 uppercase_letter := ‘A’ - ‘Z’
 lowercase_letter := ‘a’ - ‘z’

1.2 Keywords

int Edge Graph Node def add
else return while bool remove if
new double

for main string char List Map INF
null void

1.3 Literals

1.3.1 String Literals

● string literals are ASCII characters inside double quotation marks.
C escape character rules are applied as same.

Escape Sequence Description

\” Insert a double quote at this
point.

\\ Insert a backslash at this point

\n Insert a newline at this point

\t Insert a tab at this point

\r Insert a carriage return at this
point

\b Insert a backspace at this
point

\f Insert a formfeed at this point

1.3.2 Integer Literals

● Giraffe only uses decimal integer literals, i.e., there is no Hex or
Oct numbers. A valid integer literal is either a decimal value in the
valid integer value range, +INF or -INF. Also note that +INF and -INF is
a single lexeme, i.e., there is no space between +/- and INF.

1.3.3 Boolean Literals

● A boolean literal represents a truth value and can have the value
true or false (case sensitive).

1.4 Delimiters

1.4.1 Parentheses and Braces

Parentheses are used to force evaluation of parts of a program in a specific
order. They are also used to enclose arguments for a function.

1.4.2 Commas

Commas are used to separate function arguments.

1.4.3 Brackets

Brackets are used for array initialization, assignment, and access.

1.4.4 Semicolon

A semicolon is used to terminate a sequence of code.

1.4.5 Curly Braces

Curly braces are used to enclose function definitions, blocks of code, function
definitions. In general, blocks enclosed within curly braces do not need to be
terminated with semicolons.

1.4.6 Periods

Periods are used for accessing fields of object.

1.4.7 Whitespace

Whitespace (unless used in a string literal) is used to separate tokens, but
has no special meaning otherwise. List of whitespace characters: spaces,
tabs, newlines, vertical tabs, and formfeed characters.

2 Data Types

Giraffe is statically typed. The types of all variables are known at compile
time and cannot be changed.

2.1 Primitive Data Types

int (5) 32-bit signed integers that can range from −2,147,483,648 to
2,147,483,647

double
(8.7)

Represented by IEEE 754 double-precision 64-bit number

char (‘Z’) An ASCII character

str
(“Hello!”)

A set of chars

bool (true) true or false value

null null

void Empty return type

2.2 Non-Primitive Data Types

List A sequence of the same type of data in square braces
separated by commas

Map A hashed set of keys and values of any type

Node A vertex represents in (x,y)

Edge A line between two nodes, possibly with weight and/or
direction

Graph A set of nodes and edges

2.2.1 Declaring lists

● Declare a list by specifying a type, followed by brackets
enclosing the number of elements in the list, followed by an identifier
for the list

● All lists dynamically sized
● The following will declare a list of 10 integers called “myList”

int[10] myList;
● Or you could do the following for a list of Nodes of length 0

Node[] myList;

2.2.2 Accessing and setting list elements

● List elements can be accessed by providing the desired index of
the element you wish to access enclosed in brackets next to the
identifier

● The following will set the element at index 1 of “myList” to 0
myList[1] = 0;

2.2.3 List length

● The following will return the length of list “myList”
myList.len();

2.2.4 List add

● To add an element to “myList”
myList.add(5);

2.2.5 List remove

● To remove the element at index 0 of “myList”
myList.remove(0);

2.3 Nodes

● To initialize a node with no edges, use the new keyword
Node n = new Node();

● You can optionally feed the constructor with a graph and list of
nodes to create edges with

Node n = new Node(g,myList);

2.4 Edges

● To connect two nodes with an edge, use the pipe operator
n | m;

● But be careful, the nodes must exist in a graph together to be
linked

2.5 Graphs

● To initialize a graph with no nodes or edges, use the new
keyword

Graph g = new Graph();
● You can optionally feed the constructor with a list of nodes and a

list of lists of edges for each node
Graph g = new Graph(nodeList, listsOfEdges);

● Another option involves using node addition to create a graph
n + m;

2.6 Map

2.6.1 Declaring a map
● To initialize an empty map

Map myMap = new HashMap();

2.6.2 Adding key and value
● To add the key and value in the map

myMap.put(key, value);

2.6.3 Clear map

● To clear all the key and related value in the map
myMap.clear();

2.6.4 Map size
● To get the size of the map

myMap.size();

2.6.5 Map remove
● To remove a value associate with a key

myMap.remove(key);

2.6.6 Get value from map
● To get a value associate with a key

myMap.get(key);

2.6.7 Check key
● Return true if the map contains the key, otherwise return false

myMap.containsKey(key);

2.6.8 Check value
● Return true if the map contains the value, otherwise return false

myMap.containsValue(value);

3 Expressions and Operators

3.1 Expressions

Expressions consist of one or more operands with zero or more operators.
Innermost expressions are evaluated first, as determined by grouping into
parentheses, and operator precedence helps determine order of evaluation.
Expressions are otherwise evaluated left to right.

3.2 Operators

3.2.1 Basic

The table below presents the language operators (including assignment
operators, mathematical operators, logical operators, and comparison
operators), descriptions, and associativity rules. Operator precedence is
highest at the top and lowest at the bottom of the table.

Operator Description Associativity

. Element Access Left-to-Right

[] List Access
Right-to-left

! Logical Not

* / % Multiplication,
division, remainder

Left-to-right

+- Addition, subtraction

< <= >
>=

Inequality Operators

== != Comparison
Operators

&& Logical And

|| Logical Or

= Assignment Right-to-left

Node/Graph:

 + Node + Node = Graph Return graph of two nodes

Graph + Node = Graph Return graph with node added

 - Graph - Node = Graph Return graph with node removed

| Node | Node = Edge Return edge of newly connected
nodes if they are in the same
graph

; end of line

// Start of a one line comment

/* Start of a comment block

*/ End of a comment block

4 Control Flow

if (expression) {
 ...
}

Execute the statements between
curly braces if expression is true

if (expression) {
 ...
} else {
 ...
}

Can have an optional else
statement. One can also nest the if-
else statement.

while (loop condition) {
 ...
}

The while statement is used to
execute a block of code continuously
in a loop until the specified condition
is no longer met. If the condition is
not met upon initially reaching the
while loop, the code is never
executed

for (initialization; loop condition;
increment;) {
 …
}

Iterate until loop condition is met,
incrementing each time

for (member in collection) {
 …
}

Execute the following block on each
element of the collection

continue Continue to next iteration of the loop

break Break out of the loop

return Return signals that what follows it
should be the return values

in Syntax sugar

5 Functions

5.1 Function Definitions

● Function definitions consist of an initial keyword “def,” a return
type, a function identifier, a set of parameters and their types, and
then a block of code to execute when that function is called with the
specified parameters. An example of an addition function definition is
as follows:

def int sum(int a, int b) { return a+b; }

5.2 Calling Functions

● A function can be called its identifier followed by its params in
parentheses. for example:

sum(0,100);

6 Program Structure and Scope

6.1 Importing Libraries

Use the #import syntax at the top of a .gf file to import GF libraries. A GF
library is a file with extension .gf that consists of a list of GF functions. To get
access to a GF library’s functions, simply copy the library file to the lib/ folder
if it’s not there already, then add the line “#import [libraryName]” to the top
of any GF program that uses that library.

#import stdlib
#import typeConversionLib

6.2 Scope

Any declarations made within the program that are not within one the block
of an if statement, a while statement, and a function definition are available
for reference any point later in the program. Declarations made within blocks
of an if statement, a while statement, or a function definition are only
available for reference within that block. Declarations are never visible to
any code that comes before it in the program.

7 Built-in Functions

7.1 The print function

The print function can be used to print out strings, integers, and booleans to
the command line. The general structure for calling the print function is as
follows:

print ("GIRAPHE");
print (62);

API of Graph(G)

Name Function
Expression

Description

add G.add(n) Add node to graph

merge G.merge(g) Merge Graph g with Graph G and
return a new graph.

contains G.contains(n) Check whether node n is in the
graph

size G.size() Return the number of nodes in G

path G.path(n1,n2) Return shortest path between
nodes

is empty G.isEmpty() Return whether the graph has
node or not

remove G.remove(n) Remove node from Graph G

get articulation
points

G.articulations() Get articulation points

get a node G.getNode(int id) Returns the node with specified id

get all nodes G.getAllNodes() returns the list of nodes in the
graph

get all edges G.getAllEdges() returns the list of edges in the
graph

get edge count G.getEdgeCount() returns the number of edges in the
graph

get node count G.getNodeCount() returns the number of nodes in the

graph

API of Node(N)

Name Function
Expression

Description

value N.value() Return the value of node

neighbo
r

N.nbr() Return a list of all connected nodes in an
undirected graph

child N.child() Return a list of nodes which are children of the
current node in a directed graph

parent N.parent() Return the parents of a node in a directed
graph

getID N.getID() Returns the unique integer ID of the specified
node

API of Edge(E)

Name Function
Expression

Description

start E.start() Return the starting point of one edge

end E.end() Return the end of one edge

weight E.weight() Set the weight of the edge

nodes E.nodes() Return a list of two nodes connected by the
edge E

label E.label() Return the boolean value, true if the edge is
been labeled

remove E.remove() Remove edge E

